Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:43:05.540Z Has data issue: false hasContentIssue false

IDENTIFICATION OF OPTIMIZATION AREAS OF A TRANSTIBIAL PROSTHESIS THROUGH THE POTENTIALS OF ADDITIVE MANUFACTURING PROCESSES

Published online by Cambridge University Press:  27 July 2021

Kay-Eric Steffan*
Affiliation:
Technische Universität Darmstadt
Michel Fett
Affiliation:
Technische Universität Darmstadt
Daniel Kurth
Affiliation:
Technische Universität Darmstadt
Eckhard Kirchner
Affiliation:
Technische Universität Darmstadt
*
Steffan, Kay-Eric Werner Heinz, Technische Universität Darmstadt, Produktentwicklung und Maschinenelemente pmd, Germany, steffan@pmd.tu-darmstadt.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Additive manufacturing enables new possibilities for the design of end products. These are rooted in the potentials of the manufacturing technology, such as flexible, tool-free production. These potentials can be used for the economic and flexible production of customized products. To support the use of the potentials, a development method was created which identifies optimization areas within a product. Therefore, the complexity is reduced by using of product functions. Characteristic functions and structural configurations are used to identify optimization areas. This contribution describes the application of the new development method to an existing mechanical transtibial prosthesis. In doing so optimization areas are identified which may make use of the potentials provided by additive manufacturing. One area is the interface between the prosthesis and the ground. By analyzing walking environments and the gait cycle the need for walking assistance on deformable surfaces was identified. Significant improvements were achieved through a functional integrated, additive manufactured foot sleeve.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Ce:koon Prothesis Covers (2020), Homepage, Available at: https://www.cekoon.com/ (3. October 2020).Google Scholar
Feldhusen, J. and Grote, K.-H. (2013), “Lösungsfindung: Einleitung”, In: Feldhusen, J. and Grote, K.-H. (Eds.), Konstruktionslehre Methoden und Anwendung erfolgreicher Produktentwicklung, Springer-Verlag, Berlin, pp. 283291. http://doi.org/10.1007/978-3-642-29569-0.Google Scholar
Feldhusen, J., Grote, K.-H., Göpfert, J. and Tretow, G. (2013), “Technische Systeme”, In: Feldhusen, J. and Grote, K.-H. (Eds.), Konstruktionslehre Methoden und Anwendung erfolgreicher Produktentwicklung, Springer-Verlag, Berlin, pp. 237278. http://doi.org/10.1007/978-3-642-29569-0.Google Scholar
Haberfellner, R., Weck, O. de, Fricke, E. and Vössner, S. (2019), Systems Engineering, Springer International Publishing, Cham. http://doi.org/10.1007/978-3-030-13431-0.CrossRefGoogle Scholar
Kamrad, I., Söderberg, B., Örneholm, H. and Hagberg, K. (2020), “SwedeAmp-the Swedish Amputation and Prosthetics Registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome”, Acta orthopaedica, Vol. 91 No. 4, pp. 464470. http://doi.org/10.1080/17453674.2020.1756101.CrossRefGoogle ScholarPubMed
Kate, J. ten, Smit, G. and Breedveld, P. (2017), “3D-printed upper limb prostheses: a review”, Disability and rehabilitation. Assistive technology, Vol. 12 No. 3, pp. 300314. http://doi.org/10.1080/17483107.2016.1253117.CrossRefGoogle ScholarPubMed
Kozak, L.J. and Owings, M.F. (1998), “Ambulatory and inpatient procedures in the United States, 1995”, Vital Health Stat, Vol. 13 No. 139, pp. 1119.Google Scholar
Kröger, K., Berg, C., Santosa, F., Malyar, N. and Reinecke, H. (2017), “Lower Limb Amputation in Germany”, Deutsches Arzteblatt international, Vol. 114 No. 7, pp. 130136. http://doi.org/10.3238/arztebl.2017.0130.Google ScholarPubMed
Maier, U., Ottobock, SE & Co KGaA (2018), DE102018133486A1, Verfahren zum Herstellen eines Prothesenschaftes und Prothesenschaft, Available at: https://worldwide.espacenet.com/patent/search/family/070969710/publication/DE102018133486A1?q=DE102018133486A1 (22. March 2021)Google Scholar
Ottobock, (2020), Homepage - Prothesen - Produkte, Available at: https://www.ottobock.de/prothesen/produkte-von-a-bis-z/ (15. August 2020).Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Engineering Design, Springer London, London. http://doi.org/10.1007/978-1-84628-319-2.CrossRefGoogle Scholar
Petrovic, V., Vicente Haro Gonzalez, J., Jordá Ferrando, O., Delgado Gordillo, J., Ramón Blasco Puchades, J. and Portolés Griñan, L. (2011), “Additive layered manufacturing: sectors of industrial application shown through case studies”, International Journal of Production Research, Vol. 49 No. 4, pp. 10611079. http://doi.org/10.1080/00207540903479786.CrossRefGoogle Scholar
Piazza, C., Grioli, G., Catalano, M.G. and Bicchi, A. (2019), “A Century of Robotic Hands”, Annual Review of Control, Robotics, and Autonomous Systems, Vol. 2 No. 1, pp. 132. http://doi.org/10.1146/annurev-control-060117-105003.CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2008), Konzeptentwicklung und Gestaltung technischer Produkte: Optimierte Produkte - systematisch von Anforderungen zu Konzepten, Springer-Verlag, Berlin Heidelberg. http://doi.org/10.1007/978-3-540-68563-0.CrossRefGoogle Scholar
Schuy, J. (2016), Variable Torsionssteifigkeit in Unterschenkelprothesen zur aktiven Unterstützung in dynamischen Gangsituationen, Dissertation, Technische Universität Darmstadt. https://tuprints.ulb.tu-darmstadt.de/5733/Google Scholar
Sonova, (2020), 3D printing technology for improved hearing, Available at: https://www.sonova.com/en/story/innovation/3d-printing-technology-improved-hearing (7. December 2020).Google Scholar
Steffan, K.-E., Fett, M. and Kirchner, E. (2020a), “Extended Approach to Optimize Modular Products Through the Potentials of Additive Manufacturing”, DESIGN Conference, Croatia, 26. - 29. October 2020, Cambridge University Press, Cambridge, pp. 11151124. http://doi.org/10.1017/dsd.2020.172.CrossRefGoogle Scholar
Steffan, K.-E., Fett, M. and Kurth, D. (2020b), Identification of optimization areas of a transtibial prosthesis through the potentials of additive manufacturing processes foot prosthesis sleeve, Available at: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2543 (10. December 2020). http://doi.org/10.25534/tudatalib-390.CrossRefGoogle Scholar
United Nations (2019), World Population Prospects, Available at: https://population.un.org/wpp/Publications/Files/WPP2019_Volume-I_Comprehensive-Tables.pdf (2. December 2020).Google Scholar
Verein deutscher Ingenieure (2019), VDI 2221 Part 1, Design of technical products and systems: Model of product design, Beuth Verlag GmbH.Google Scholar
Whittle, M.W. (2006), An Introduduction to Gait Analysis, Butterworth-Heinemann Ltd, London.Google Scholar