Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T01:51:35.400Z Has data issue: false hasContentIssue false

METHODOLOGY FOR A TASK-SPECIFIC AND PERSONALISED DEVELOPMENT OF AN INITIAL EXOSKELETON DESIGN

Published online by Cambridge University Press:  27 July 2021

Tobias Drees*
Affiliation:
University of Duisburg-Essen
Steffen Kunnen
Affiliation:
University of Duisburg-Essen
Robin Pluhnau
Affiliation:
University of Duisburg-Essen
Arun Nagarajah
Affiliation:
University of Duisburg-Essen
*
Drees, Tobias, University of Duisburg-Essen, Institute of product engineering, Germany, tobias.drees@uni-due.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The use of exoskeletons promises improved ergonomics, empowerment of users and prevention of musculoskeletal disorders. However, the development process is complex and a generic development methodology that will guide and assist designers through it is missing. The goal of this paper is to describe a methodological approach that will assist the conceptual design of exoskeletons. Based on derived methodological requirements, activities 1, 2, and 3 of the VDI 2221 (Methodology for the development of technical products) are specified to adapt the generic guideline to the development process of exoskeletons. These activities include the analysis and determination of the relationship between the use case, product requirements and motions, technical functions, and design solutions. For generating a list of product requirements designers must focus on the workers’ motions and needs for a for a task-specific and personalised development. Use case specific movements are generalised by using rotational and translational basic movements that result in six degrees of freedom and from which a function structure is derived. The method is critically reviewed based on the established methodological requirements.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Allotta, B., Conti, R., Governi, L., Meli, E., Ridolfi, A. and Volpe, Y. (2015), “Development and experimental testing of a portable hand exoskeleton”, pp. 53395344.10.1109/IROS.2015.7354131CrossRefGoogle Scholar
Association of German Chambers of Industry and Commerce (2019), DIHK-Konjunkturumfrage Herbst 2019.Google Scholar
Badke-Schaub, P., Daalhuizen, J. and Roozenburg, N. (2011), “Towards a Designer-Centred Methodology: Descriptive Considerations and Prescriptive Reflections”, in Birkhofer, H. (Ed.), The Future of Design Methodology, Springer London, London, pp. 181197. http://doi.org/10.1007/978-0-85729-615-3.Google Scholar
Bai, S. and Rasmussen, J. (2011), “Modelling of physical Human-Root interaction for Exoskeleton designs”. Thematic Conference Multibody Dynamics 2011.Google Scholar
Birkhofer, H., Kloberdanz, H., Sauer, T. and Berger, B. (2002), “Why mehods don't work and how to get them to work”, DS 29: Proceedings of EDIProD 2002, pp. 2936.Google Scholar
Bosch, T., van Eck, J., Knitel, K. and Looze, M. de (2016), “The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work”, Applied ergonomics, Vol. 54, pp. 212217. http://doi.org/10.1016/j.apergo.2015.12.003.CrossRefGoogle ScholarPubMed
Bostelman, R., Messina, E. and Foufou, S. (2017), “Cross-industry standard test method developments: from manufacturing to wearable robots”, Frontiers of Information Technology & Electronic Engineering, Vol. 18 No. 10, pp. 14471457. http://doi.org/10.1631/FITEE.1601316.CrossRefGoogle Scholar
Calzavara, M., Battini, D., Bogataj, D., Sgarbossa, F. and Zennaro, I. (2020), “Ageing workforce management in manufacturing systems: state of the art and future research agenda”, International Journal of Production Research, Vol. 58 No. 3, pp. 729747. http://doi.org/10.1080/00207543.2019.1600759.CrossRefGoogle Scholar
Chen, B., Zhong, C.-H., Zhao, X., Ma, H., Guan, X., Li, X., Liang, F.-Y., Cheng, J.C.Y., Qin, L., Law, S.-W. and Liao, W.-H. (2017), “A wearable exoskeleton suit for motion assistance to paralysed patients”, Journal of orthopaedic translation, Vol. 11, pp. 718. http://doi.org/10.1016/j.jot.2017.02.007.CrossRefGoogle ScholarPubMed
Chen, B., Zi, B., Qin, L. and Pan, Q. (2020), “State-of-the-art research in robotic hip exoskeletons: A general review”, Journal of orthopaedic translation, Vol. 20, pp. 413. http://doi.org/10.1016/j.jot.2019.09.006.CrossRefGoogle ScholarPubMed
Chiș, L.C., Copotoiu, M. and Moldovan, L. (2020), “Different Types of Exoskeletons can Improve the Life of Spinal Cord Injury's Patients – a Meta-Analysis”, Procedia Manufacturing, Vol. 46, pp. 844849. http://doi.org/10.1016/j.promfg.2020.04.014.CrossRefGoogle Scholar
Constantinescu, C., Muresan, P.-C. and Simon, G.-M. (2016), “JackEx: The New Digital Manufacturing Resource for Optimization of Exoskeleton-based Factory Environments”, Procedia CIRP, Vol. 50, pp. 508511. http://doi.org/10.1016/j.procir.2016.05.048.CrossRefGoogle Scholar
Constantinescu, C., Popescu, D., Todorovic, O., Virlan, O. and Tinca, V. (2018), “Methodology of Realising The Digital Twins of Exoskeleton-Centered Workplaces”, Applied Mathematics, Mechanics, and Engineering, Vol. 61 No. III, pp. 441448.Google Scholar
Cruz Martínez, G.M. and Z.-Avilés, L.A. (2020), “Design Methodology for Rehabilitation Robots: Application in an Exoskeleton for Upper Limb Rehabilitation”, Applied Sciences, Vol. 10 No. 16, p. 5459. http://doi.org/10.3390/app10165459.CrossRefGoogle Scholar
da Costa, B.R. and Vieira, E.R. (2010), “Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies”, American journal of industrial medicine, Vol. 53 No. 3, pp. 285323. http://doi.org/10.1002/ajim.20750.Google ScholarPubMed
Dahmen, C. and Constantinescu, C. (2020), “Methodology of Employing Exoskeleton Technology in Manufacturing by Considering Time-Related and Ergonomics Influences”, Applied Sciences, Vol. 10 No. 5, p. 1591. http://doi.org/10.3390/app10051591.CrossRefGoogle Scholar
Dahmen, C., Wöllecke, F. and Constantinescu, C. (2018), “Challenges and Possible Solutions for Enhancing the Workplaces of the Future by Integrating Smart and Adaptive Exoskeletons”, Procedia CIRP, Vol. 67, pp. 268273. http://doi.org/10.1016/j.procir.2017.12.211.CrossRefGoogle Scholar
de Vries, A. and de Looze, M. (2019), “The Effect of Arm Support Exoskeletons in Realistic Work Activities: A Review Study”, Journal of Ergonomics, Vol. 9 No. 255. http://doi.org/10.35248/2165-7556.19.9.255.Google Scholar
DIN Deutsches Institut für Normung e. V. (2016), Verfahren der Ergonomie: Teil 2: Eine Methode für die Arbeitsanalyse zur Unterstützung von Entwicklung und Design No. 16710-2, Beuth Verlag GmbH, Berlin.Google Scholar
European Agency for Safety and Health at Work (2010), OSH in figures: work-related musculoskeletal disorders in the EU - Facts and figures, European risk observatory report, Luxembourg.Google Scholar
Report, Exoskeleton (2015), “What is an exoskeleton?”, available at: https://exoskeletonreport.com/what-is-an-exoskeleton/ (accessed 4 November 2020).Google Scholar
Federal Institute for Occupational Safety and Health (BAuA) (2017), Sicherheit und Gesundheit bei der Arbeit - Berichtsjahr 2016Google Scholar
Office, Federal Statistical (2018), “Arbeitsmarkt auf einen Blick – Deutschland und Europa”.Google Scholar
Feldhusen, J. and Grote, K.-H. (2013), Pahl/Beitz Konstruktionslehre, Springer-Verlag, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-29569-0.CrossRefGoogle Scholar
Fleischer, C. and Zimmermann, A. (2008), “Auswertung von elektromyographischen Signalen zur Steuerung von Exoskeletten”, Informatik - Forschung und Entwicklung, Vol. 22 No. 3, pp. 173183. http://doi.org/10.1007/s00450-008-0042-8.CrossRefGoogle Scholar
Folgheraiter, M., Gea, J. de, Bongardt, B., Albiez, J. and Kirchner, F. (2009), “Bio-inspired control of an arm exoskeleton joint with active-compliant actuation system”, Applied Bionics and Biomechanics, Vol. 6 No. 2, pp. 193204. http://doi.org/10.1080/11762320902840187.CrossRefGoogle Scholar
Fox, S., Aranko, O., Heilala, J. and Vahala, P. (2019), “Exoskeletons - Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance”, Journal of Manufacturing Technology Management. http://doi.org/10.1108/JMTM-01-2019-0023.CrossRefGoogle Scholar
Gull, M.A., Bai, S. and Bak, T. (2020), “A Review on Design of Upper Limb Exoskeletons”, Robotics, Vol. 9 No. 1, p. 16. http://doi.org/10.3390/robotics9010016.CrossRefGoogle Scholar
Hansen, C., Gosselin, F., Ben Mansour, K., Devos, P. and Marin, F. (2018), “Design-validation of a hand exoskeleton using musculoskeletal modeling”, Applied ergonomics, Vol. 68, pp. 283288. http://doi.org/10.1016/j.apergo.2017.11.015.CrossRefGoogle Scholar
Heidari, O., Wolbrecht, E.T., Perez-Gracia, A. and Yihun, Y.S. (2018), “A task-based design methodology for robotic exoskeletons”, Journal of rehabilitation and assistive technologies engineering, Vol. 5. http://doi.org/10.1177/2055668318800672.CrossRefGoogle ScholarPubMed
Hensel, R. and Keil, M. (2018), “Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen”, Zeitschrift für Arbeitswissenschaft, Vol. 72 No. 4, pp. 252263. http://doi.org/10.1007/s41449-018-0122-y.CrossRefGoogle Scholar
Herr, H. (2009), “Exoskeletons and orthoses: classification, design challenges and future directions”, Journal of neuroengineering and rehabilitation, Vol. 6, p. 21. http://doi.org/10.1186/1743-0003-6-21.CrossRefGoogle ScholarPubMed
Huysamen, K., Looze, M. de, Bosch, T., Ortiz, J., Toxiri, S. and O'Sullivan, L.W. (2018), “Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks”, Applied ergonomics, Vol. 68, pp. 125131. http://doi.org/10.1016/j.apergo.2017.11.004.CrossRefGoogle ScholarPubMed
Huysamen, K., Power, V. and O'Sullivan, L. (2020), “Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting”, Ergonomics, Vol. 63 No. 7, pp. 818830. http://doi.org/10.1080/00140139.2020.1759698.CrossRefGoogle ScholarPubMed
Ippolito, D., Constantinescu, C. and Rusu, C.A. (2020), “Enhancement of human-centered workplace design and optimization with Exoskeleton technology”, Procedia CIRP, Vol. 91, pp. 243248. http://doi.org/10.1016/j.procir.2020.02.173.CrossRefGoogle Scholar
Karvouniaria, A., Michalos, G., Dimitropoulos, N. and Makris, S. (2017), “An approach for exoskeleton integration in manufacturing lines using Virtual Reality techniques”, Procedia CIRP, Vol. 65, pp. 3237. http://doi.org/10.1016/j.procir.2017.04.009.Google Scholar
Koller, R. and Kastrup, N. (1998), Prinziplösungen zur Konstruktion technischer Produkte, Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-58755-9CrossRefGoogle Scholar
Koopman, A.S., Kingma, I., Looze, M.P. de and van Dieën, J.H. (2020), “Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting”, Journal of biomechanics, Vol. 102. http://doi.org/10.1016/j.jbiomech.2019.109486.CrossRefGoogle ScholarPubMed
Kuhn, D. and Freyberg-Hanl, B. (2018), “Exoskelett: Therapiesystem oder Hilfsmittel zum Behinderungsausgleich”, Trauma und Berufskrankheit, Vol. 20 No. S4, pp. 254259. http://doi.org/10.1007/s10039-018-0394-7.CrossRefGoogle Scholar
Lindemann, U. (2009), Methodische Entwicklung technischer Produkte, Springer-Verlag, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-01423-9.CrossRefGoogle Scholar
Looze, M.P. de, Bosch, T., Krause, F., Stadler, K.S. and O'Sullivan, L.W. (2016), “Exoskeletons for industrial application and their potential effects on physical work load”, Ergonomics, Vol. 59 No. 5, pp. 671681. http://doi.org/10.1080/00140139.2015.1081988.CrossRefGoogle ScholarPubMed
Low, K.H., Liu, X. and Yu, H. (2005), “Development of NTU wearable exoskeleton system for assistive technologies”, in IEEE International Conference Mechatronics and Automation, 2005, pp. 10991106.10.1109/ICMA.2005.1626705CrossRefGoogle Scholar
Ngai, M. (2010), “Design of a Forearm Exoskeleton for Supination/Pronation Assistance in Daily Activities”, Bachelor Thesis, Department of Electrical and Computer Engineering, McMaster University, Hamilton.Google Scholar
Nielsen, L. (2013), Personas - user focused design, Human–computer interaction series, Springer, London.10.1007/978-1-4471-4084-9CrossRefGoogle Scholar
Perry, J.C., Rosen, J. and Burns, S. (2007), “Upper-Limb Powered Exoskeleton Design”, IEEE/ASME Transactions on Mechatronics, Vol. 12 No. 4, pp. 408417. http://doi.org/10.1109/TMECH.2007.901934.CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte, Springer-Verlag, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-20580-4.CrossRefGoogle Scholar
Pons, J.L. (Ed.) (2008), Wearable robots: Biomechatronic exoskeletons, Wiley, Hoboken N.J.10.1002/9780470987667CrossRefGoogle Scholar
Roth, K. (2000), Konstruieren mit Konstruktionskatalogen: Band 1: Konstruktionslehre, 3. Auflage, erweitert und neu gestaltet, Springer-Verlag, Berlin. http://doi.org/10.1007/978-3-642-17466-7.Google Scholar
Sauer, T., Kloberdanz, H., Walter, S., Berger, B. and Birkhofer, H. (2003), “Describing Solutions to the Conceptual Phase - Structured and User-Oriented”, DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, pp. 4958.Google Scholar
Schick, R. (2018), “Einsatz von Exoskeletten in der Arbeitswelt”, Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, Vol. 68 No. 5, pp. 266269. http://doi.org/10.1007/s40664-018-0299-0.CrossRefGoogle Scholar
Theurel, J. and Desbrosses, K. (2019), “Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders”, IISE Transactions on Occupational Ergonomics and Human Factors, Vol. 7 No. 3-4, pp. 264280. http://doi.org/10.1080/24725838.2019.1638331.CrossRefGoogle Scholar
Toxiri, S., Calanca, A., Ortiz, J., Fiorini, P. and Caldwell, D.G. (2018a), “A Parallel-Elastic Actuator for a Torque-Controlled Back-Support Exoskeleton”, IEEE Robotics and Automation Letters, Vol. 3 No. 1, pp. 492499. http://doi.org/10.1109/LRA.2017.2768120.CrossRefGoogle Scholar
Toxiri, S., Koopman, A.S., Lazzaroni, M., Ortiz, J., Power, V., Looze, M.P. de, O'Sullivan, L. and Caldwell, D.G. (2018b), “Rationale, Implementation and Evaluation of Assistive Strategies for an Active Back-Support Exoskeleton”, Frontiers in Robotics and AI, Vol. 5. http://doi.org/10.3389/frobt.2018.00053.CrossRefGoogle Scholar
VDI (1997), Methodic development of Solution principles No. 2222, Beuth-Verlag, Berlin.Google Scholar
VDI (2004), Design methodology for mechatronic systems No. 2206, Beuth-Verlag, Berlin.Google Scholar
VDI (2019), Design of technical products and systems No. 2221 Part 1, Beuth-Verlag, Berlin.Google Scholar
Vieira, E.R., Schneider, P., Guidera, C., Gadotti, I.C. and Brunt, D. (2016), “Work-related musculoskeletal disorders among physical therapists: A systematic review”, Journal of back and musculoskeletal rehabilitation, Vol. 29 No. 3, pp. 417428. http://doi.org/10.3233/BMR-150649.CrossRefGoogle ScholarPubMed
Yong, X., Yan, Z., Wang, C., Wang, C., Li, N. and Wu, X. (2019), “Ergonomic Mechanical Design and Assessment of a Waist Assist Exoskeleton for Reducing Lumbar Loads During Lifting Task”, Micromachines, Vol. 10 No. 7. http://doi.org/10.3390/mi10070463.CrossRefGoogle ScholarPubMed