Published online by Cambridge University Press: 26 May 2022
The goal in system-level design is to generate a diverse set of high-performing design configurations that allow trade-offs across different objectives and avoid early concretization. We use deep generative models to learn a manifold of the valid design space, followed by Monte Carlo sampling to explore and optimize design over the learned manifold, producing a diverse set of optimal designs. We demonstrate the efficacy of our proposed approach on the design of an SAE race vehicle and propeller.