Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T13:32:04.650Z Has data issue: false hasContentIssue false

PARAMETRIC MODELLING OF THE EXTERIOR DESIGN OF AUTONOMOUS SHUTTLES

Published online by Cambridge University Press:  19 June 2023

Philipp Hafemann*
Affiliation:
Technical University of Munich
Manuel Daumoser
Affiliation:
Technical University of Munich
Markus Lienkamp
Affiliation:
Technical University of Munich
*
Hafemann, Philipp, Technical University of Munich, Germany, hafemann@ftm.mw.tum.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Autonomous vehicles for the last mile are a promising use case for advancing autonomous driving in real-world traffic. For this purpose, traditional car manufacturers and newcomer companies develop a new vehicle concept: the autonomous shuttle. During the development, components from the automation domain, such as the sensors, must be placed and integrated into the vehicle body. The trade-offs between the functional performance of the perception and the exterior design must be evaluated early in the design process. For this purpose, a model of the vehicle exterior is needed. In this contribution, we present a method for parametric modeling of the vehicle exterior of autonomous shuttles. We define 17 input parameters and use computer-aided design to create a virtual model of the body and the wheelhouses. In the results, we validate our method by ensuring that existing shuttles can be modeled with our approach and also analyze the limitations. The model supports decision-making in the early design phase by enabling quick iterations between sensor placement and exterior design.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Antonialli, F. (2019), “International benchmark on experimentations with Autonomous Shuttles for Collective Transport”, in 27th International Colloquium of Gerpisa, 12–14 June, 2019, Paris, France, Gerpisa.Google Scholar
Bhise, V., Kridli, G., Mamoola, H., Devaraj, S., Pillai, A. and Shulze, R. (2009), “Development of a Parametric Model for Advanced Vehicle Design”, in Williams, D., Allen, J. and Hukkeri, R. (Eds.), Electronic Control Module Network and Data Link Development and Validation using Hardware in the Loop Systems, 2004/03/08, SAE International. http://doi.org/10.4271/2004-01-0381.CrossRefGoogle Scholar
Bucchiarone, A., Battisti, S., Marconi, A., Maldacea, R. and Ponce, D.C. (2021), “Autonomous Shuttle-as-a-Service (ASaaS): Challenges, Opportunities, and Social Implications”, IEEE Transactions on Intelligent Transportation Systems, Vol. 22 No. 6, pp. 37903799. http://doi.org/10.1109/TITS.2020.3025670.CrossRefGoogle Scholar
Catiadoc (2012a), “Creating Bitangent Shape Fillets”, available at: http://catiadoc.free.fr/online/sdgug_C2/sdgugbt0305.htm (accessed 14 November 2022).Google Scholar
Catiadoc (2012b), “Creating Swept Surfaces”, available at: http://catiadoc.free.fr/online/wfsug_C2/wfsugbt0203.htm (accessed 14 November 2022).Google Scholar
Catiadoc (2012c), “Creating Swept Surfaces Using an Explicit Profile”, available at: http://catiadoc.free.fr/online/sdgug_C2/sdgugbt0205.htm#guidecrv (accessed 14 November 2022).Google Scholar
Chowdhury, H., Alam, F., Khan, I., Djamovski, V. and Watkins, S. (2012), “Impact of Vehicle add-ons on Energy Consumption and Greenhouse Gas Emissions”, Procedia Engineering, Vol. 49, pp. 294302. http://doi.org/10.1016/j.proeng.2012.10.140.CrossRefGoogle Scholar
Fischer, L., Krogmann, S. and Holder, D. (2021), “Integration von Sensoren in das Exterieur-Design automatisierter_autonomer Fahrzeuge”, in Stuttgarter Symposium für Produktentwicklung SSP 2021 Stuttgart, 20. Mai 2021, Wissenschaftliche Konferenz, Stuttgart, Universität Stuttgart.Google Scholar
Sullivan, Frost and (2018), Global Autonomous Driving Market Outlook, available at: https://store.frost.com/global-autonomous-driving-market-outlook-2018.html (accessed 30 November 2022).Google Scholar
FTM (2022), “GitHub - TUMFTM/AuVeCoDe: Tool to design and optimize autonomous vehicle concepts”, available at: https://github.com/TUMFTM/AuVeCoDe (accessed 22 November 2022).Google Scholar
Hartstern, M., Rack, V. and Stork, W. (2020), “Conceptual Design of Automotive Sensor Systems Analyzing the impact of different sensor positions on surround-view coverage”, in 2020 IEEE SENSORS, IEEE. http://doi.org/10.1109/sensors47125.2020.9278638.CrossRefGoogle Scholar
Hucho, W.-H. (2013), “Einführung”, in Schütz, T. (Ed.), Hucho - Aerodynamik des Automobils, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 167. http://doi.org/10.1007/978-3-8348-2316-8_1.Google Scholar
Islas Munoz, J.A., Baha, E. and Muratovski, G. (2022), “Radically Innovating the Automotive Design Process with Immersive Technologies”, DS 117: Proceedings of the 24th International Conference on Engineering and Product Design Education (E&PDE 2022), London South Bank University in London, UK. 8th - 9th September 2022. http://doi.org/10.35199/EPDE.2022.15.CrossRefGoogle Scholar
Joundi, J., Christiaens, Y., Saldien, J., Conradie, P. and Marez, L. de (2020), “An Explorative Study towards using VR Sketching as a Tool for Ideation and Protoyping in Product Design”. http://doi.org/10.1017/dsd.2020.61.CrossRefGoogle Scholar
König, A. (2022), “Methodik zur Auslegung von autonomen Fahrzeugkonzepten”, Dissertation, FTM, Technical University Munich, Munich, 2022.Google Scholar
König, A., Telschow, D., Nicoletti, L. and Lienkamp, M. (2021), “Package Planning of Autonomous Vehicle Concepts”, Proceedings of the Design Society, Vol. 1, pp. 23692378. http://doi.org/10.1017/pds.2021.498.CrossRefGoogle Scholar
Liu, Z., Arief, M. and Zhao, D. (2019), “Where Should We Place LiDARs on the Autonomous Vehicle? - An Optimal Design Approach”, in 2019 International Conference on Robotics and Automation (ICRA), 20.05.2019 - 24.05.2019, Montreal, QC, Canada, IEEE, pp. 27932799. http://doi.org/10.1109/ICRA.2019.8793619.CrossRefGoogle Scholar
Mira-Bonnardel, S. (2021), “Robomobility for collective transport: a prospective user centric view”, International Journal of Automotive Technology and Management, Vol. 21 No. 1/2, p. 99. http://doi.org/10.1504/IJATM.2021.113353.CrossRefGoogle Scholar
Mira-Bonnardel, S. and Attias, D. (2018), “The autonomous vehicle for urban collective transport: Disrupting business models embedded in the smart city revolution”, in Gerpisa (Ed.), 26th Gerpisa International Colloquium: New and Traditional Players in the Global Automotive Sector, 11 - 14 June 2018, Sao Paolo, Gerpisa.Google Scholar
Nicoletti, L., Romano, A., König, A., Schockenhoff, F. and Lienkamp, M. (2020), “Parametric Modeling of Mass and Volume Effects for Battery Electric Vehicles, with Focus on the Wheel Components”, World Electric Vehicle Journal, Vol. 11 No. 4, p. 63. http://doi.org/10.3390/wevj11040063.CrossRefGoogle Scholar
Pfeffer, P. and Harrer, M. (Eds.) (2011), Lenkungshandbuch, Vieweg+Teubner, Wiesbaden. http://doi.org/10.1007/978-3-8348-8167-0.CrossRefGoogle Scholar
Seeger, H. (2014), Basiswissen Transportation-Design, Springer Fachmedien Wiesbaden, Wiesbaden. http://doi.org/10.1007/978-3-658-04449-7.CrossRefGoogle Scholar
Tovey, M., Porter, S. and Newman, R. (2003), “Sketching, concept development and automotive design”, Design Studies, Vol. 24 No. 2, pp. 135153. http://doi.org/10.1016/S0142-694X(02)00035-2.CrossRefGoogle Scholar
Tzivanopoulos, T., Stieg, J., Krasteva, P. and Vietor, T. (2014), “Analysis of new freedoms in future vehicle interiors”, in Bargende, M., Reuss, H.-C. and Wiedemann, J. (Eds.), 14. Internationales Stuttgarter Symposium, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 14751488. http://doi.org/10.1007/978-3-658-05130-3.CrossRefGoogle Scholar
Tzivanopoulos, T., Watschke, H., Krasteva, P. and Vietor, T. (2015), “New Approaches in Vehicle Conception”, ATZ worldwide, Vol. 117 No. 9, pp. 49. http://doi.org/10.1007/s38311-015-0048-3.CrossRefGoogle Scholar
Watzenig, D. and Horn, M. (2017), “Introduction to Automated Driving”, in Watzenig, D. and Horn, M. (Eds.), Automated Driving, Springer International Publishing, Cham, pp. 316. http://doi.org/10.1007/978-3-319-31895-0_1.CrossRefGoogle Scholar
Wolff, K., Futschik, H.D., Achleitner, A., Burgers, C. and Döllner, G. (2021), “Gesamtfahrzeug”, in Pischinger, S. and Seiffert, U. (Eds.), Vieweg Handbuch Kraftfahrzeugtechnik, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 125167. http://doi.org/10.1007/978-3-658-25557-2_3.sCrossRefGoogle Scholar