Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T07:17:46.906Z Has data issue: false hasContentIssue false

PART ORIENTATION AND SEPARATION TO REDUCE PROCESS COSTS IN ADDITIVE MANUFACTURING

Published online by Cambridge University Press:  27 July 2021

Jannik Reichwein*
Affiliation:
Technische Universität Darmstadt
Eckhard Kirchner
Affiliation:
Technische Universität Darmstadt
*
Reichwein, Jannik, Technische Universität Darmstadt, Produktentwicklung und Maschinenelemente, Germany, reichwein@pmd.tu-darmstadt.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Additive manufacturing offers great potential in geometric design through the layer-by-layer production of components. This is often used in the development of additively manufactured components to make components lighter. An even greater reduction in mass is possible if several components are combined into a more complex component. However, as complexity increases, so do the manufacturing costs, due to a higher demand for supporting structure, reworking and longer production time. Especially for complex components, which make poor use of the space available in the additive manufacturing system, component separation can be a useful way of reducing manufacturing costs. Therefore, a procedure for automated component separation is presented, which determines an optimal cutting plane with respect to the manufacturing costs. The presented procedure is evaluated using two exemplary components where a reduction of manufacturing costs up to 54 % could be achieved.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Adam, G.A.O. (2015), Systematische Erarbeitung von Konstruktionsregeln für die additiven Fertigungsverfahren Lasersintern, Laserschmelzen und Fused Deposition Modeling, Paderborn, Diss., Shaker, Aachen.Google Scholar
Deka, A. and Behdad, S. (2019), “Part Separation Technique for Assembly-Based Design in Additive Manufacturing using Genetic Algorithm”, Procedia Manufacturing, Vol. 34, pp. 764771.Google Scholar
Ehrlenspiel, K. (1985), Kostengünstig konstruieren: Kostenwissen, Kosteneinflüsse, Kostensenkung; Konstruktionsbücher, Vol. 35, Springer, Berlin.CrossRefGoogle Scholar
Gibson, I., Rosen, D. and Stucker, B. (2015), Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, Springer, New York, NY.CrossRefGoogle Scholar
Kim, S. and Moon, S.K. (2020), “A Part Consolidation Design Method for Additive Manufacturing based on Product Disassembly Complexity”, Applied Sciences, Vol. 10 No. 3, p. 1100.CrossRefGoogle Scholar
Kranz, J. (2017), Methodik und Richtlinien für die Konstruktion von laseradditiv gefertigten Leichtbaustrukturen, Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Kranz, J., Herzog, D. and Emmelmann, C. (2015), “Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4”, Journal of Laser Applications, Vol. 27 No. S1, S14001.CrossRefGoogle Scholar
Krause, D. and Gebhardt, N. (2018), Methodische Entwicklung Modularer Produktfamilien: Hohe Produktvielfalt Beherrschbar Entwickeln, Vieweg, Berlin, Heidelberg.CrossRefGoogle Scholar
Kumke, M. (2018), Methodisches Konstruieren von additiv gefertigten Bauteilen, Springer Fachmedien Wiesbaden, Wiesbaden.CrossRefGoogle Scholar
Laverne, F., Segonds, F., Anwer, N. and Le Coq, M. (2015), “Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study”, Journal of Mechanical Design, Vol. 137 No. 12, p. 121701.Google Scholar
Nie, Z., Jung, S., Kara, L.B. and Whitefoot, K.S. (2020), “Optimization of Part Consolidation for Minimum Production Costs and Time Using Additive Manufacturing”, Journal of Mechanical Design, Vol. 142 No. 7.CrossRefGoogle Scholar
Oh, Y., Zhou, C. and Behdad, S. (2018), “Part decomposition and 2D batch placement in single-machine additive manufacturing systems”, Journal of Manufacturing Systems, Vol. 48, pp. 131139.CrossRefGoogle Scholar
Reichwein, J., Kaspar, J., Vielhaber, M. and Kirchner, E. (2019), “Exploitation of AM-Potentials by Linking Manufacturing Processes to Function-Driven Product Design”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 739748.Google Scholar
Reichwein, J., Rudolph, K., Geis, J., Kirchner, E. (2021), “Adapting Product Architecture to Additive Manufacturing through Consolidation and Separation”, Procedia CIRP: CIRP Design conference 2021.CrossRefGoogle Scholar
Schulte, F.; Würtenberger, J.; Steffan, K.-E.; Kirchner, (2020), “TRIZ als Schlüssel zu den Potentialen additiver Fertigungsverfahren”, In: Lachmayer, E., Lippert, R., Kaierle, R. B., (Hrsg.), S. Konstruktion für die additive Fertigung 2018, S. 5575, Berlin, Heidelberg, Springer Vieweg, ISBN 978-3-662-59057-7.CrossRefGoogle Scholar
Wohlers, T.T. (2018), Wohlers Report: 3d printing and additive manufacturing state of the industry, Wohlers Associates, Fort Collins.Google Scholar