Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T20:18:49.976Z Has data issue: false hasContentIssue false

ROBUST PRODUCT DESIGN – INFLUENCING FACTORS ON UPGRADEABLE MODULAR PRODUCTS

Published online by Cambridge University Press:  19 June 2023

Maximilian Stephan Kübler*
Affiliation:
Karlsruhe Institute of Technology
Frederik Beck
Affiliation:
Karlsruhe Institute of Technology
Bastian Glasmacher
Affiliation:
Karlsruhe Institute of Technology
Simon Rapp
Affiliation:
Karlsruhe Institute of Technology
Albert Albers
Affiliation:
Karlsruhe Institute of Technology
*
Kübler, Maximilian Stephan, Karlsruhe Institute of Technology, Germany, maximilian.kuebler@kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In today's VUCA-World it is necessary to consider future requirements to develop change- and future-robust future products, especially regarding the increasing demand for sustainable solutions. In order to address this situation, upgradeability of modular products can be a solution. Considering that elements of modular products are used in several different products and over a long period of time, there is a need to act on this challenge. To uncover areas with a need for action, a systematic literature review on upgradeable and modular products was conducted. After resolving four fields of action and under consideration of the need for sustainable products, another systematic literature review examined the solution space of upgradable modular product architecture. In conclusion, several influencing factors on the upgradeable design of modular products could be identified, which are presented in this work.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Agrawal, V. V., Atasu, A. and Ülkü, S. (2016) “Modular Upgradability in Consumer Electronics: Economic and Environmental Implications”, Journal of Industrial Ecology, Vol. 20, No. 5, pp. 10181024.CrossRefGoogle Scholar
Albers, A., Bursac, N. and Wintergerst, E. (2015) “Produktgenerationsentwicklung – Bedeutung und Herausforderungen aus einer entwicklungsmethodischen Perspektive”.Google Scholar
Albers, A., Dumitrescu, R., Marthaler, F., Albers, A., Kuehfuss, D., Strauch, M., Siebe, A. and Bursac, N. (2018) “PGE-Produktgenerationsentwicklung und Zukunftsvorausschau: Eine systematische Betrachtung zur Ermittlung der Zusammenhänge”, 14. Symposium für Vorausschau und Technologieplanung, Berlin, 8.-9.11.2018, p. 23.Google Scholar
Albers, A., Heimicke, J., Walter, B., Basedow, G. N., Reiß, N., Heitger, N., Ott, S. and Bursac, N. (2018) “Product Profiles: Modelling customer benefits as a foundation to bring inventions to innovations”, Procedia CIRP, vol. 70, pp. 253258.CrossRefGoogle Scholar
Albers, A., Rapp, S., Birk, C. and Bursac, N. (2017) “Die Frühe Phase der PGE - Produktgenerationsentwicklung”, 4. Stuttgarter Symposium für Produktentwicklung 2017 (SSP) : Produktentwicklung im disruptiven Umfeld, Stuttgart, Deutschland, 28-29 Juni 2017.Google Scholar
Albers, A., Scherer, H., Bursac, N. and Rachenkova, G. (2015) “Model Based Systems Engineering in Construction Kit Development – Two Case Studies”, Procedia CIRP, vol. 36, pp. 129134.CrossRefGoogle Scholar
Blessing, L. T. M. and Chakrabarti, A. (2009) DRM, a Design Research Methodology, London, Springer London Limited.CrossRefGoogle Scholar
Bobba, S., Ardente, F. and Mathieux, F. (2016) “Environmental and economic assessment of durability of energy-using products: Method and application to a case-study vacuum cleaner”, Journal of Cleaner Production, vol. 137, pp. 762776.CrossRefGoogle Scholar
Boorsma, N. and Bakker, C.A. (2019) D3.1 -Defining the current baseline and the target circular design methodologies Project acronym: ReCiPSS Project full title: Resource-efficient Circular Product-Service Systems -ReCiPSS Grant agreement no.: 776577-2; Version: 1.0.Google Scholar
Bursac, N. (2016) Model Based Systems Engineering zur Unterstützung der Baukastenentwicklung im Kontext der Frühen Phase der Produktgenerationsentwicklung, Karlsruher Institut für Technologie.Google Scholar
Ceschin, F. and Gaziulusoy, I. (2016) “Evolution of design for sustainability: From product design to design for system innovations and transitions”, Design Studies, vol. 47, pp. 118163.CrossRefGoogle Scholar
Chierici, E. and Copani, G. (2016) “Remanufacturing with Upgrade PSS for New Sustainable Business Models”, Procedia CIRP, vol. 47, pp. 531536.CrossRefGoogle Scholar
Cox, J., Griffith, S., Giorgi, S. and King, G. (2013) “Consumer understanding of product lifetimes”, Resources, Conservation and Recycling, vol. 79, pp. 2129.CrossRefGoogle Scholar
Düser, T. (2021) “Continuous Validation of Systems-of-Systems: Driver for a close integration of product development and production technology”, Karlsruher Tagung für Produkt-Produktions-Codesign. Karlsruhe.Google Scholar
ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M. and Bernard, A. (2013) “Product variety management”, CIRP Annals, Vol. 62, No. 2, pp. 629652.CrossRefGoogle Scholar
Ferguson, S., Siddiqi, A., Lewis, K. and Weck, O. L. de (2008) “Flexible and Reconfigurable Systems: Nomenclature and Review”, 33rd Design Automation Conference: September 4-7, 2007, Las Vegas, Nevada USA. Las Vegas, Nevada, USA, 9/4/2007 - 9/7/2007. New York, NY, ASME, pp. 249263.Google Scholar
Fink, A. and Siebe, A. (2016) Szenario-Management: Von strategischem Vorausdenken zu zukunftsrobusten Entscheidungen, Frankfurt, Campus Verlag.Google Scholar
Fricke, E. & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle. Systems Engineering, Vol. 8(Issue 4), 342359. https://doi.org/10.1002/sys.20039CrossRefGoogle Scholar
Greve, E., Fuchs, C., Hamraz, B., Windheim, M. and Krause, D. (2021) “Design for future variety to enable long-term benefits of modular product families”, Proceedings of the Design Society, vol. 1, pp. 9931002.CrossRefGoogle Scholar
Hansen, P. (2020) “The Hansen Report”, ATZelektronik, no. 1, pp. 3639.CrossRefGoogle ScholarPubMed
Khan, M. A., Mittal, S., West, S. and Wuest, T. (2018) “Review on upgradability – A product lifetime extension strategy in the context of product service systems”, Journal of Cleaner Production, vol. 204, pp. 11541168.CrossRefGoogle Scholar
Khan, M. A. and Wuest, T. (2018) “Towards a framework to design upgradable product service systems”, Procedia CIRP, vol. 78, pp. 400405.CrossRefGoogle Scholar
Krause, D., Vietor, T., Inkermann, D., Hanna, M., Richter, T. and Wortmann, N. (2021) “Produktarchitektur”, in Bender, B. and Gericke, K. (eds) Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, Springer, pp. 335393.CrossRefGoogle Scholar
Inoue, M., Yamada, S., Yamada, Tetsuo and Bracke, S. (2014) “A Design Method for Product Upgradability with Different Customer Demands”, undefined.CrossRefGoogle Scholar
Marthaler, F. (2021). Future-Oriented Product Development - a Systematic Approach to Deriving Cross-Generational Systems of Objectives of Future Product Generations Through Strategic Foresight. In Albers, A. & Matthiesen, S. (Hrsg.), Forschungsberichte des IPEK - Institut für Produktentwicklung (137).Google Scholar
Marthaler, F., Gesk, J. W., Siebe, A. and Albers, A. (2020) “An explorative approach to deriving future scenarios: A first comparison of the consistency matrix-based and the catalog-based approach to generating future scenarios”, Procedia CIRP, vol. 91, pp. 883892.CrossRefGoogle Scholar
Mörtl, M. (2003) “Design for Upgrading” of machines and production processes: A guideline based on actual demands of industry and sustainable design”, 14th International Conference on Engineering Design ICED”03, Design Society.Google Scholar
Pialot, O., Millet, D. and Bisiaux, J. (2017) ““Upgradable PSS”: Clarifying a new concept of sustainable consumption/production based on upgradablility”, Journal of Cleaner Production, vol. 141, pp. 538550.CrossRefGoogle Scholar
Ponn, J. and Lindemann, U. (2011) Konzeptentwicklung und Gestaltung technischer Produkte: Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, 2nd ed.CrossRefGoogle Scholar
Renner, I. (2007) Methodische Unterstützung funktionsorientierter Baukastenentwicklung am Beispiel Automobil, Technische Universität München.Google Scholar
Schuh, G. (2010) Lean Innovation, Berlin, Springer.Google Scholar
Schuh, G., Arnoscht, J., Lenders, M. and Rudolf, S. (2010) Effizienter innovieren mit Produktbaukästen: Studienergebnisse und Leitfaden - ein Beitrag zu Lean-Innovation, Aachen, WZL.Google Scholar
Siebe, A. (2018) Die Zukunft vorausdenken und gestalten: Stärkung der Strategiekompetenz im Spitzencluster its OWL, Springer Berlin Heidelberg.CrossRefGoogle Scholar
Ulku, S., Dimofte, C. V. and Schmidt, G. (2011) “Consumer Valuation of Modularly Upgradeable Products”, SSRN Electronic Journal.CrossRefGoogle Scholar
Ulrich, K. (1995) “The role of product architecture in the manufacturing firm”, Research Policy, Vol. 24, No. 3, pp. 419440.CrossRefGoogle Scholar
Umeda, Y., Kondoh, S., Shimomura, Y. and Tomiyama, T. (2005) “Development of design methodology for upgradable products based on function–behavior–state modeling”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 19, No. 3, pp. 161182.CrossRefGoogle Scholar
Vogel, P. and Hultin, G. (2018) “Introduction: Digitalization and Why Leaders Need to Take It Seriously”, in Thomson, P. (ed) Conquering Digital Overload, Palgrave Macmillan, pp. 18.Google Scholar