Article contents
STUDY OF SYSTEM INTERFACES THROUGH THE NOTION OF COMPLEMENTARITY
Published online by Cambridge University Press: 27 July 2021
Abstract
Understanding emergence is an important goal of system thinking, as it can express both desirable and negative properties of products and systems. Emergence has also a special importance as it has a direct link to the performance of products and systems, and thus has a direct relationship with the quality of life and thus sustainability in our societies. Emergence and system thinking are closely related to engineering design methodologies. In our paper, we develop a more precise definition of emergence through the core principles of systems complementarity that are similarity, irreducibility and sophisticated relationships expressed through the interfaces between systems, subsystems or product components.
We demonstrate the utility of the approach based on an aircraft pylon case study by presenting a detailed definition of an interface design matrix and analyse how pylon subsystems influence emergence. The results have shown that the product can be perfectly represented by a model-based approach supporting interface management and the assessment of system complementarity. In turn, this approach allows to go beyond a qualitative definition of emergence, as it proposes a quantitative approach through the assessment of complementarity.
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- The Author(s), 2021. Published by Cambridge University Press
References
- 2
- Cited by