Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T20:54:26.822Z Has data issue: false hasContentIssue false

The Hausdorff Dimension is Convex on the Left Side of 1/4

Published online by Cambridge University Press:  10 January 2017

Ludwik Jaksztas*
Affiliation:
Faculty of Mathematics and Information Sciences, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland (jaksztas@impan.gov.pl)

Abstract

Let d(c) denote the Hausdorff dimension of the Julia set Jc of the polynomial fc (z) = z 2 +c. The function cd(c) is real-analytic on the interval (–3/4, 1/4), which is in the domain bounded by the main cardioid of the Mandelbrot set. We prove that the function d is convex close to 1/4 on the left side of it.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bodart, O. and Zinsmeister, M., Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151(2) (1996), 121137.Google Scholar
2. Douady, A., Sentenac, P. and Zinsmeister, M., Implosion parabolique et dimension de Hausdorff, C. R. Acad. Sci. Paris Sér. I 325 (1997), 765772.Google Scholar
3. Havard, G. and Zinsmeister, M., Le chou-fleur a une dimension de Hausdorff inférieure à 1,295, Preprint (available at http://www.univ-orleans.fr/mapmo/publications/mapmo2000/mapmo0001.pdf; 2000).Google Scholar
4. Havard, G. and Zinsmeister, M., Thermodynamic formalism and variations of the Hausdorff dimension of quadratic Julia sets, Commun. Math. Phys. 210 (2000), 225247.Google Scholar
5. Hubbard, J. H., Teichmüller theory and applications to geometry, topology and dynamics, Teichmüller Theory, Volume 1 (Matrix Editions, Ithaca, NY, 2006).Google Scholar
6. Jaksztas, L., On the derivative of the Hausdorff dimension of the quadratic Julia sets, Trans. Am. Math. Soc. 363 (2011), 52515291.Google Scholar
7. Jaksztas, L., On the left side derivative of the Hausdorff dimension of the Julia sets for z 2 + c at c = –3/4, Israel J. Math. 199(1) (2014), 143.Google Scholar
8. McMullen, C., Hausdorff dimension and conformal dynamics III: computation of dimension, Am. J. Math. 120 (1998), 471515.Google Scholar
9. McMullen, C., Hausdorff dimension and conformal dynamics II: geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535593.Google Scholar
10. Przytycki, F. and Urbanski, M., Conformal fractals: ergodic theory methods, London Mathematical Society Lecture Note Series, Volume 371 (Cambridge University Press, 2010).Google Scholar
11. Ransford, T., Potential theory in the complex plane, London Mathematical Society Student Texts, Volume 28 (Cambridge University Press, 1995).Google Scholar
12. Ruelle, D., Repellers for real analytic maps, Ergod. Theory Dynam. Syst. 2 (1982), 99107.Google Scholar
13. Zinsmeister, M., Thermodynamic formalism and holomorphic dynamical systems, SMF/AMS Texts and Monographs, Volume 2 (Société Mathématique de France/American Mathematical Society, 1996).Google Scholar