Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:35:33.675Z Has data issue: false hasContentIssue false

Linear Groups with Almost Right Engel Elements

Published online by Cambridge University Press:  30 January 2019

Pavel Shumyatsky*
Affiliation:
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil (pavel@unb.br)

Abstract

Let G be a linear group such that for every gG there is a finite set ${\cal R}(g)$ with the property that for every xG all sufficiently long commutators [g, x, x, …, x] belong to ${\cal R}(g)$. We prove that G is finite-by-hypercentral.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.De Falco, M., de Giovanni, F., Musella, C. and Sysak, Ya., On the upper central series of infinite groups, Proc. Amer. Math. Soc. 139 (2011), 385389.Google Scholar
2.Feit, W. and Thompson, J. G., Solvability of groups of odd order, Pacific J. Math. 13 (1963), 7751029.Google Scholar
3.Garascuk, M. S., On the theory of generalized nilpotent linear groups, Dokl. Akad. Nauk BSSR. 3 (1960), 276277.Google Scholar
4.Goldschmidt, D. M., Weakly embedded 2-local subgroups of finite groups, J. Algebra 21 (1972), 341351.Google Scholar
5.Gorenstein, D., Finite groups (Chelsea Publishing Company, New York, 1980).Google Scholar
6.Gruenberg, K. W., The Engel structure of linear groups, J. Algebra 3 (1966), 291303.Google Scholar
7.Kegel, O. H. and Wehrfritz, B. F. A., Locally finite groups (North-Holland, Amsterdam, 1973).Google Scholar
8.Khukhro, E. I. and Shumyatsky, P., Almost Engel compact groups, J. Algebra 500 (2018), 439456.Google Scholar
9.Kurdachenko, L. A., Otal, J. and Subbotin, I. Ya., On a generalization of Baer theorem, Proc. Amer. Math. Soc. 141 (2013), 25972602.Google Scholar
10.Medvedev, Yu., On compact Engel groups, Israel J. Math. 185 (2003), 147156.Google Scholar
11.Robinson, D. J. S., A course in the theory of groups, 2nd edn (Springer-Verlag, New York, 1996).Google Scholar
12.Shumyatsky, P., Almost Engel linear groups, Monatsh. Math. 186 (2018), 711719.Google Scholar
13.Tits, J., Free subgroups in linear groups, J. Algebra 20 (1972), 250270.Google Scholar
14.Wehrfritz, B. A. F., Infinite linear groups (Springer-Verlag, Berlin, 1973).Google Scholar
15.Wilson, J. S. and Zelmanov, E. I., Identities for Lie algebras of pro-p groups, J. Pure Appl. Algebra 81(1) (1992), 103109.Google Scholar
16.Zorn, M., Nilpotency of finite groups, Bull. Amer. Math. Soc. 42 (1936), 485486.Google Scholar