Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T04:12:34.067Z Has data issue: false hasContentIssue false

A Remark on Rationally Connected Varieties and Mori Dream Spaces

Published online by Cambridge University Press:  26 September 2018

Claudio Fontanari*
Affiliation:
Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123 Povo, Trento, Italy (claudio.fontanari@unitn.it)
Diletta Martinelli
Affiliation:
Diletta Martinelli, School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK (Diletta.Martinelli@ed.ac.uk)
*
*Corresponding author.

Abstract

In this short note, we show that a construction by Ottem provides an example of a rationally connected variety that is not birationally equivalent to a Mori dream space with terminal singularities.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ahmadinezhad, H. and Zucconi, F., Mori dream spaces and birational rigidity of Fano 3-folds, Adv. Math. (N. Y.) 292 (2016), 410445.Google Scholar
2.Birkar, C., Cascini, P., Hacon, C. and McKernan, J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23(2) (2010), 405468.Google Scholar
3.Cheltsov, I., Birationally rigid Fano varieties, Russ. Math. Surv. 60(5) (2005), 875.Google Scholar
4.Cheltsov, I., On singular cubic surfaces, Asian J. Math. 13 (2009), 191214.Google Scholar
5.Corti, A. and Mella, M., Birational geometry of terminal quartic 3-folds, I, Amer. J. Math. 126(4) (2004), 739761.Google Scholar
6.Graber, T., Harris, J. and Starr, J., Families of rationally connected varieties, J. Amer. Math. Soc. 16(1) (2003), 5767.Google Scholar
7.Hu, Y. and Keel, S., Mori dream spaces and GIT, Michigan Math. J. 48(1) (2000), 331348.Google Scholar
8.Kollár, J., Singularities of pairs, Proceedings of Symposia in Pure Mathematics, Volume 62, pp. 221288 (American Mathematical Society, 1997).Google Scholar
9.Kollár, J. and Mori, S., Birational geometry of algebraic varieties (Cambridge University Press, 2008).Google Scholar
10.Kollár, J., Miyaoka, Y. and Mori, S., Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36 (1992), 765779.Google Scholar
11.Krylov, I., Rationally connected non-Fano type varieties. Preprint, arXiv:1406.3752v3, 2015.Google Scholar
12.Ottem, C., Birational geometry of hypersurfaces in products of projective spaces, Math. Z. 280(1–2) (2015), 135148.Google Scholar
13.Pukhlikov, A., Birationally rigid varieties (American Mathematical Society, 2013).Google Scholar
14.Pukhlikov, A., Birationally rigid Fano fibre spaces. II, Izv. Math. 79(4) (2015), 809.Google Scholar
15.Tian, G., On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0, Inventiones Math. 89(2) (1987), 225246.+0,+Inventiones+Math.+89(2)+(1987),+225–246.>Google Scholar
16.Zhang, Q., Rational connectedness of log Q-Fano varieties, J. Reine Angew. Math. 2006(590) (2006), 131142.Google Scholar