Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T12:26:55.218Z Has data issue: false hasContentIssue false

Symmetric Bi-Skew Maps and Symmetrized Motion Planning in Projective Spaces

Published online by Cambridge University Press:  06 August 2018

Jesús González*
Affiliation:
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, México City 07000, Mexico (jesus@math.cinvestav.mx)

Abstract

This work is motivated by the question of whether there are spaces X for which the Farber–Grant symmetric topological complexity TCS(X) differs from the Basabe–González–Rudyak–Tamaki symmetric topological complexity TCΣ(X). For a projective space ${\open R}\hbox{P}^m$, it is known that $\hbox{TC}^S ({\open R}\hbox{P}^{m})$ captures, with a few potential exceptional cases, the Euclidean embedding dimension of ${\open R}\hbox{P}^{m}$. We now show that, for all m≥1, $\hbox{TC}^{\Sigma}({\open R}\hbox{P}^{m})$ is characterized as the smallest positive integer n for which there is a symmetric ${\open Z}_{2}$-biequivariant map Sm×SmSn with a ‘monoidal’ behaviour on the diagonal. This result thus lies at the core of the efforts in the 1970s to characterize the embedding dimension of real projective spaces in terms of the existence of symmetric axial maps. Together with Nakaoka's description of the cohomology ring of symmetric squares, this allows us to compute both TC numbers in the case of ${\open R}\hbox{P}^{2^{e}}$ for e≥1. In particular, this leaves the torus S1×S1 as the only closed surface whose symmetric (symmetrized) TCS (TCΣ) invariant is currently unknown.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adem, J., Gitler, S. and James, I. M., On axial maps of a certain type, Bol. Soc. Mat. Mexicana (2) 17 (1972), 5962.Google Scholar
2Basabe, I., González, J., Rudyak, Y. B. and Tamaki, D., Higher topological complexity and its symmetrization, Algebr. Geom. Topol. 14(4) (2014), 21032124.Google Scholar
3Berrick, A. J., Axial maps with further structure, Proc. Amer. Math. Soc. 54 (1976), 413416.Google Scholar
4Berrick, A. J., Feder, S. and Gitler, S., Symmetric axial maps and embeddings of projective spaces, Bol. Soc. Mat. Mexicana (2) 21(2) (1976), 3941.Google Scholar
5Cohen, D. C. and Vandembroucq, L., Topological complexity of the Klein bottle, J. Appl. Comput. Topol. 1 (2017), 199213.Google Scholar
6Davis, D. M., The symmetric topological complexity of the circle, N. Y. J. Math. 23 (2017), 593602.Google Scholar
7Domínguez, C., González, J. and Landweber, P., The integral cohomology of configuration spaces of pairs of points in real projective spaces, Forum Math. 25(6) (2013), 12171248.Google Scholar
8Dranishnikov, A., On topological complexity of non-orientable surfaces, Topol. Applic. (special issue dedicated to Kodama) 232 (2017), 6169.Google Scholar
9Dranishnikov, A., The topological complexity and the homotopy cofiber of the diagonal map for non-orientable surfaces, Proc. Amer. Math. Soc. 144(11) (2016), 49995014.Google Scholar
10Farber, M., Topological complexity of motion planning, Discr. Comput. Geom. 29(2) (2003), 211221.Google Scholar
11Farber, M., Instabilities of robot motion, Topol. Appl. 140(2–3) (2004), 245266.Google Scholar
12Farber, M. and Grant, M., Symmetric motion planning, In Topology and robotics (ed. Farber, M., Ghrist, R., Burger, M. and Koditschek, D.), Contemporary Mathematics, Volume 438, pp. 85104 (American Mathematical Society, Providence, RI, 2007).Google Scholar
13Farber, M., Tabachnikov, S. and Yuzvinsky, S., Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 18531870.Google Scholar
14González, J., Symmetric topological complexity as the first obstruction in Goodwillie's Euclidean embedding tower for real projective spaces, Trans. Amer. Math. Soc. 363(12) (2011), 67136741.Google Scholar
15González, J. and Landweber, P., Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9(1) (2009), 473494.Google Scholar
16Grant, M., Symmetrized topological complexity, J. Topol. Anal., in press (arXiv:1703. 07142).Google Scholar
17Hopf, H., Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Räume, Vierteljschr. Naturforsch. Ges. Zürich 85 1940), 165177.Google Scholar
18Massey, W. S., The quotient space of the complex projective plane under conjugation is a 4-sphere, Geometriae Dedicata 2 (1973), 371374.Google Scholar
19Nakaoka, M., Cohomology theory of a complex with a transformation of prime period and its applications, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956), 51102.Google Scholar
20Palais, R. S., On the existence of slices for actions of non-compact Lie groups, Ann. Math. (2) 73 (1961), 295323.Google Scholar
21Palais, R. S. and Terng, C.-L., Critical point theory and submanifold geometry, Lecture Notes in Mathematics, Volume 1353 (Springer-Verlag, Berlin, 1988).Google Scholar
22Schwarz, A., The genus of a fiber space, Amer. Math. Soc. Transl. (2) 55 (1966), 49140.Google Scholar