No CrossRef data available.
Published online by Cambridge University Press: 08 January 2008
We characterize algebra homomorphisms from the Lebesgue algebra $L^1_\omega(\mathbb{R})$ into a Banach algebra $\mathcal{A}$. As a consequence of this result, every bounded algebra homomorphism $\varPhi:L^1_\omega(\mathbb{R})\to\mathcal{A}$ is approached through a uniformly bounded family of fractional homomorphisms, and the Hille–Yosida theorem for $C_0$-groups is proved.