No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
In some biological problems, a parasite-host system is immersed in a toxic solution in order to kill off the parasite while leaving the host as little affected as possible. A problem of this type was considered by Clements and Edelstein (2), who treated both the host and the parasite as cylindrical in shape. In a separate paper Clements (1) considered the corresponding problem where the parasite is spherical and the host cylindrical. In both cases, the concentration of the toxic solution at the boundary is taken as having a constant value, c, and the penetration of the poison into the host and parasite is treated as a linear diffusion problem with an appropriate diffusion coefficient. It is assumed also that the host and the parasite are free of the toxic substance initially. The process is terminated when the average concentration in the parasite reaches a lethal level, τ, and the problem is to see how M, the average concentration in the host, is affected by the choice of c (for a given value of τ).