Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T02:17:36.009Z Has data issue: false hasContentIssue false

d-Auslander–Reiten sequences in subcategories

Published online by Cambridge University Press:  15 January 2020

Francesca Fedele*
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon TyneNE1 7RU, UK (F.Fedele2@newcastle.ac.uk)

Abstract

Let Φ be a finite-dimensional algebra over a field k. Kleiner described the Auslander–Reiten sequences in a precovering extension closed subcategory ${\rm {\cal X}}\subseteq {\rm mod }\,\Phi $. If $X\in \mathcal {X}$ is an indecomposable such that ${\rm Ext}_\Phi ^1 (X,{\rm {\cal X}})\ne 0$ and $\zeta X$ is the unique indecomposable direct summand of the $\mathcal {X}$-cover $g:Y\to D\,{\rm Tr}\,X$ such that ${\rm Ext}_\Phi ^1 (X,\zeta X)\ne 0$, then there is an Auslander–Reiten sequence in $\mathcal {X}$ of the form

$${\rm \epsilon }:0\to \zeta X\to {X}^{\prime}\to X\to 0.$$
Moreover, when ${\rm En}{\rm d}_\Phi (X)$ modulo the morphisms factoring through a projective is a division ring, Kleiner proved that each non-split short exact sequence of the form
$$\delta :0\to Y\to {Y}^{\prime}\buildrel \eta \over \longrightarrow X\to 0$$
is such that η is right almost split in $\mathcal {X}$, and the pushout of δ along g gives an Auslander–Reiten sequence in ${\rm mod}\,\Phi $ ending at X.

In this paper, we give higher-dimensional generalizations of this. Let $d\geq 1$ be an integer. A d-cluster tilting subcategory ${\rm {\cal F}}\subseteq {\rm mod}\,\Phi $ plays the role of a higher ${\rm mod}\,\Phi $. Such an $\mathcal {F}$ is a d-abelian category, where kernels and cokernels are replaced by complexes of d objects and short exact sequences by complexes of d + 2 objects. We give higher versions of the above results for an additive ‘d-extension closed’ subcategory $\mathcal {X}$ of $\mathcal {F}$.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras, London Mathematical Society Student Texts, Volume 65 (Cambridge University Press, Cambridge, 2010).Google Scholar
2Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, Volume 36 (Cambridge University Press, New York, 1994).Google Scholar
3Auslander, M. and Smalø, S. O., Preprojective modules over Artin algebras, J. Algebra 66 (1980), 61122.CrossRefGoogle Scholar
4Auslander, M. and Smalø, S. O., Almost split sequences in subcategories, J. Algebra 69 (1981), 426454.CrossRefGoogle Scholar
5Herschend, M., Jørgensen, P. and Vaso, L., Wide subcategories of d-cluster tilting subcategories, preprint math.RT/1705.02246.Google Scholar
6Hilton, P. J. and Stammbach, U., A course in homological algebra, Graduate Texts in Mathematics, Volume 4 (Springer-Verlag, New York, 1997).CrossRefGoogle Scholar
7Iyama, O., Higher dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), 2250.CrossRefGoogle Scholar
8Iyama, O., Cluster-tilting for higher Auslander algebras, Adv. Math. 226 (2011), 161.CrossRefGoogle Scholar
9Iyama, O. and Oppermann, S., n-representation-finite algebras and n-APR tilting, Trans. Amer. Math. Soc. 363 (2011), 65756614.CrossRefGoogle Scholar
10Jacobsen, K. M. and Jørgensen, P., d-abelian quotients of (d + 2)-angulated categories, J. Algebra 521 (2019), 114136.CrossRefGoogle Scholar
11Jasso, G., n-abelian and n-exact categories, Math. Z. 283 (2016), 703759.CrossRefGoogle Scholar
12Jasso, G. and Kvamme, S., An introduction to higher Auslander–Reiten theory, Bull. London Math. Soc. 51 (2019), 124.CrossRefGoogle Scholar
13Jørgensen, P., Auslander–Reiten triangles in subcategories, J. K-theory 3 (2009), 583601.CrossRefGoogle Scholar
14Jørgensen, P., Higher dimensional homological algebra, Lecture Notes from LMS-CMI Research School (University of Leicester, 19–23 June, 2017).Google Scholar
15Kleiner, M., Approximations and almost split sequences in homologically finite subcategories, J. Algebra 198 (1997), 135163.CrossRefGoogle Scholar
16Oppermann, S. and Thomas, H., Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. 14 (2012), 16791737.CrossRefGoogle Scholar