Article contents
DIFFUSIVE TRANSPORT OF PARTIALLY QUANTIZED PARTICLES: EXISTENCE, UNIQUENESS AND LONG-TIME BEHAVIOUR
Published online by Cambridge University Press: 25 January 2007
Abstract
A self-consistent model for charged particles, accounting for quantum confinement, diffusive transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three-dimensional Poisson equation with the particle density as the source term. This density is the product of a two-dimensional surface density and that of a one-dimensional mixed quantum state. The surface density is the solution of a drift–diffusion equation with an effective surface potential deduced from the fully three-dimensional one and which involves the diagonalization of a one-dimensional Schrödinger operator. The overall problem is viewed as a two-dimensional drift–diffusion equation coupled to a Schrödinger–Poisson system. The latter is proven to be well posed by a convex minimization technique. A relative entropy and an a priori $L^2$ estimate provide sufficient bounds to prove existence and uniqueness of a global-in-time solution. In the case of thermodynamic equilibrium boundary data, a unique stationary solution is proven to exist. The relative entropy allows us to prove the convergence of the transient solution towards it as time grows to infinity. Finally, the low-order approximation of the relative entropy is used to prove that this convergence is exponential in time.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 49 , Issue 3 , October 2006 , pp. 513 - 549
- Copyright
- Copyright © Edinburgh Mathematical Society 2006
- 14
- Cited by