Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T05:50:30.258Z Has data issue: false hasContentIssue false

Endomorphisms of fibred groups

Published online by Cambridge University Press:  20 January 2009

Carlton J. Maxson
Affiliation:
Department of MathematicsTexas A&M UniversityCollege Station, TX 77843U.S.A.
Gunter F. Pilz
Affiliation:
Institut für MathematikJohannes Kepler Universität Linz4040 LinzAustria
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A collection = {Gα|α∈A} of proper subgroups Gα of a group G is a fibration of G if

It is of geometric interest to associate two semigroups to a group G with fibration :

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1989

References

REFERENCES

1.Baer, R., Partitionen einfacher Gruppen, Math. Z. 75 (1961), 333372.CrossRefGoogle Scholar
2.Baer, R., Einfache Partitionen endlicher Gruppen mit nicht-trivialer Fitting'scher Unter-gruppe, Arch. Math. 11 (1961), 8189.CrossRefGoogle Scholar
3.Karzel, H. and Maxson, C. J., Fibered groups with non-trivial centers, Results in Math. 7 (1984), 192208.CrossRefGoogle Scholar
4.Kegel, O. H., Nicht-einfache Partitionen endlicher Gruppen, Arch. Math. 12 (1961), 170175.CrossRefGoogle Scholar
5.Kegel, O. H., Aufzählung der Partitionen endlicher Gruppen mit trivialen Fitting'schen Untergruppen, Arch. Math. 12 (1961), 409412.CrossRefGoogle Scholar
6.Maxson, C. J., Near-rings associated with generalized translation structures, J. Geom. 24 (1985), 175193.CrossRefGoogle Scholar
7.Maxson, C. J. and Pilz, G., Near-rings determined by fibered groups, Arch. Math. 44 (1985), 311318.CrossRefGoogle Scholar
8.Pilz, G., Near-rings, 2nd ed. (North-Holland, Amsterdam-New York, 1983).Google Scholar
9.Suzuki, M., On a finite group with a partition, Arch. Math. 12 (1961), 241254.CrossRefGoogle Scholar