Published online by Cambridge University Press: 20 January 2009
After preliminary results and definitions in Section 1, we show in Section 2 that any finite regular semigroup is saturated, in the sense of Howie and Isbell [8] (that is, the dominion of a finite regular semigroup U in a strictly containing semigroup S is never S). This is equivalent of course to showing that in the category of semigroups any epi from a finite regular semigroup is in fact onto. Note for inverse semigroups the stronger result, that any inverse semigroup is absolutely closed [11, Theorem VII. 2.14] or [8, Theorem 2.3]. Further, any inverse semigroup is in fact an amalgamation base in the class of semigroups [10], in the sense of [5]. These stronger results are known to be false for finite regular semigroups [8, Theorem 2.9] and [5, Theorem 25]. Whether or not every regular semigroup is saturated is an open problem.