Article contents
Freudenthal's theorem and spherical classes in H*QS0
Published online by Cambridge University Press: 20 December 2019
Abstract
This note is on spherical classes in $H_*(QS^0;k)$ when $k=\mathbb{Z}, \mathbb{Z}/p$, with a special focus on the case of p=2 related to the Curtis conjecture. We apply Freudenthal's theorem to prove a vanishing result for the unstable Hurewicz image of elements in ${\pi _*^s}$ that factor through certain finite spectra. After either p-localization or p-completion, this immediately implies that elements of well-known infinite families in ${_p\pi _*^s}$, such as Mahowaldean families, map trivially under the unstable Hurewicz homomorphism ${_p\pi _*^s}\simeq {_p\pi _*}QS^0\to H_*(QS^0;\mathbb{Z} /p)$. We also observe that the image of the submodule of decomposable elements under the integral unstable Hurewicz homomorphism $\pi _*^s\simeq \pi _*QS^0\to H_*(QS^0;\mathbb{Z} )$ is given by $\mathbb{Z} \{h(\eta ^2),h(\nu ^2),h(\sigma ^2)\}$. We apply the latter to completely determine spherical classes in $H_*(\Omega ^dS^{n+d};\mathbb{Z} /2)$ for certain values of n>0 and d>0; this verifies Eccles' conjecture on spherical classes in $H_*QS^n$, n>0, on finite loop spaces associated with spheres.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 2019
References
- 1
- Cited by