Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:47:11.805Z Has data issue: false hasContentIssue false

A generalized Davenport expansion

Published online by Cambridge University Press:  26 August 2021

Alexander E. Patkowski*
Affiliation:
1390 Bumps River Rd., Centerville, MA02632, USA (alexpatk@hotmail.com, alexepatkowski@gmail.com)

Abstract

We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, P. T. and Chowla, S., Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372374.CrossRefGoogle Scholar
Chakraborty, K., Kanemitsu, S. and Tsukada, H., Arithmetical Fourier series and the modular relation, Kyushu J. Math. 66(2) (2012), 411427.CrossRefGoogle Scholar
Coffey, M. W. and Lettington, M. C., Mellin transforms with only critical zeros: Legendre functions, J. Number Theory 148 (2015), 507536.10.1016/j.jnt.2014.07.021CrossRefGoogle Scholar
Davenport, H., On some infinite series involving arithmetic function, Q. J. Math. 8 (1937), 813.10.1093/qmath/os-8.1.8CrossRefGoogle Scholar
Jaffard, S., On Davenport expansions, in Fractal geometry and applications: A jubilee of Benoit Mandelbrot, Part 1, Proc. Sympos. Pure Math., Volume 72, pp. 273–303 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Li, H. L., Ma, J. and Zhang, W. P., On some Diophantine Fourier series, Acta Math. Sinica (Engl. Ser.) 26 (2010), 11251132.CrossRefGoogle Scholar
Moll, V. and Espinosa, O., On some definite integrals involving the Hurwitz zeta function. Part 1, Ramanujan J. 6 (2002), 159188.Google Scholar
Paris, R. B. and Kaminski, D., Asymptotics and Mellin–Barnes Integrals (Cambridge University Press, 2001), https://doi.org/10.1017/CBO9780511546662.CrossRefGoogle Scholar
Patkowski, A., On Popov's formula involving the von Mangoldt function, Pi Mu Epsilon J. 15(1) (Fall 2019), 4547.Google Scholar
Segal, S., On an identity between infinite series of arithmetic functions, Acta Arithmetica 28(4) (1976), 345348.CrossRefGoogle Scholar
Titchmarsh, E. C., The theory of the Riemann zeta function, 2nd edn. (Oxford University Press, 1986).Google Scholar