Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T07:23:28.756Z Has data issue: false hasContentIssue false

Groups with few conjugacy classes

Published online by Cambridge University Press:  31 March 2011

László Héthelyi
Affiliation:
Department of Algebra, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3–9, 1521 Budapest, Hungary (hethelyi@math.bme.hu; he@math.bme.hu)
Erzsébet Horváth
Affiliation:
Department of Algebra, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3–9, 1521 Budapest, Hungary (hethelyi@math.bme.hu; he@math.bme.hu)
Thomas Michael Keller
Affiliation:
Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, USA (keller@txstate.edu)
Attila Maróti
Affiliation:
MTA Alfréd Rényi Institute of Mathematics, Réaltanoda utca 13–15, 1053 Budapest, Hungary (maroti@renyi.hu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have with equality if and only if if is an integer, and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2011

References

1.Carter, R. W., Finite groups of Lie type (Wiley, 1985).Google Scholar
2.Conway, J. H., Curtis, R. T, Norton, S. P, Parker, R. A and Wilson, R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups (Oxford University Press, 1985).Google Scholar
3.Dornhoff, L., Group representation theory (North-Holland, Amsterdam, 1982).Google Scholar
4.GAP Group, GAP—groups, algorithms, and programming, Version 4.4 (available at www.gap-system.org; 2005).Google Scholar
5.Héthelyi, L. and Külshammer, B., On the number of conjugacy classes of a finite solvable group, Bull. Lond. Math. Soc. 32 (2000), 668672.CrossRefGoogle Scholar
6.Keller, T. M., Lower bounds for the number of conjugacy classes of finite groups, Math. Proc. Camb. Phil. Soc. 147 (2009), 567577.CrossRefGoogle Scholar
7.Kleidman, P. B. and Liebeck, M. W., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Notes, Volume 129 (Cambridge University Press, 1990).Google Scholar
8.Landau, E., Über die Klassenzahl der binären quadratischen Formen von negativer Diskriminante, Math. Annalen 56 (1903), 671676.CrossRefGoogle Scholar
9.Malle, G., Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler Operation, J. Alg. 300 (2006), 655672.CrossRefGoogle Scholar
10.Manz, O. and Wolf, T., Representations of solvable groups (Cambridge University Press, 1993).CrossRefGoogle Scholar
11.Pintz, J., Landau's problems on primes, J. Théorie Nombres Bordeaux 21(2) (2009), 357404.CrossRefGoogle Scholar
12.Pyber, L., Finite groups have many conjugacy classes, J. Lond. Math. Soc. 46 (1992), 239249.CrossRefGoogle Scholar
13.Seager, S. M., The rank of a finite primitive solvable permutation group, J. Alg. 105 (1987), 389394.CrossRefGoogle Scholar
14.Vera López, A. and Vera López, J., Classification of finite groups according to the number of conjugacy classes, I, Israel J. Math. 51 (1985), 305338.CrossRefGoogle Scholar
15.Vera López, A. and Vera López, J., Classification of finite groups according to the number of conjugacy classes, II, Israel J. Math. 56 (1986), 188221.CrossRefGoogle Scholar