No CrossRef data available.
Article contents
Hilbert-Samuel function and Grothendieck group
Published online by Cambridge University Press: 20 January 2009
Abstract
Let (A, m) be a Noetherian local ring such that the residue field A/m is infinite. Let I be arbitrary ideal in A, and M a finitely generated A-module. We denote by ℓ(I, M) the Krull dimension of the graded module ⊕n≥0InM/mInM over the associated graded ring of I. Notice that ℓ(I, A) is just the analytic spread of I. In this paper, we define, for 0 ≤ i ≤ ℓ = ℓ(I, M), certain elements ei(I, M) in the Grothendieck group K0(A/I) that suitably generalize the notion of the coefficients of Hilbert polynomial for m-primary ideals. In particular, we show that the top term eℓ (I, M), which is denoted by eI(M), enjoys the same properties as the ordinary multiplicity of M with respect to an m-primary ideal.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 43 , Issue 1 , February 2000 , pp. 73 - 94
- Copyright
- Copyright © Edinburgh Mathematical Society 2000