Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T17:17:13.220Z Has data issue: false hasContentIssue false

Module structure on Lie powers and natural coalgebra-split sub-Hopf algebras of tensor algebras

Published online by Cambridge University Press:  04 April 2011

J. Y. Li
Affiliation:
Institute of Mathematics and Physics, Shijiazhuang Railway Institute, Shijiazhuang 050043, People's Republic of China (yanjinglee@163.com)
F. C. Lei
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People's Republic of China (fclei@dlut.edu.cn)
J. Wu
Affiliation:
Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076 (matwuj@nus.edu.sg)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the functors from modules to modules that occur as the summands of tensor powers and the functors from modules to Hopf algebras that occur as natural coalgebra summands of tensor algebras. The main results provide some explicit natural coalgebra summands of tensor algebras. As a consequence, we obtain some decompositions of Lie powers over the general linear groups.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2011

References

1.Akin, K., Buchsbaum, D. A. and Weyman, J., Schur functors and Schur complexes, Adv. Math. 44 (1982), 207278.CrossRefGoogle Scholar
2.Bryant, R. M. and Johnson, M., Lie powers and Witt vectors, J. Algebraic Combin. 28 (2008), 169187.CrossRefGoogle Scholar
3.Bryant, R. M. and Schocker, M., The decomposition of Lie powers, Proc. Lond. Math.Soc. 93 (2006), 175196.CrossRefGoogle Scholar
4.Bryant, R. M. and Stöhr, R., Lie powers in prime degree, Q. J. Math. 56 (2005), 473–48.CrossRefGoogle Scholar
5.Cohen, F., On combinatorial group theory in homotopy, Contemp. Math. 188 (1995), 5763.CrossRefGoogle Scholar
6.Cohen, F. R., Moore, J. C. and Neisendorfer, J. A., Torsion in homotopy groups, Annals Math. (2) 109 (1979), 121168.CrossRefGoogle Scholar
7.Curtis, C. W. and Reiner, I., Methods of representation theory, Pure Applied Mathematics, Volume I (Wiley, 1981).Google Scholar
8.Donkin, S., The q-Schur algebra, London Mathematical Society Lecture Notes Series, Volume 253 (Cambridge University Press, 1998).Google Scholar
9.Donkin, S. and Erdmann, K., Tilting modules, symmetric functions, and the module structure of the free Lie algebra, J. Alg. 203 (1998), 6990.CrossRefGoogle Scholar
10.Erdmann, K. and Schocker, M., Modular Lie powers and the Solomon descent algebra, Math. Z. 253 (2006), 295313.CrossRefGoogle Scholar
11.Grbić, J., Selick, P. S. and Wu, J., The decomposition of the loop space of the mod 2 Moore space, Alg. Geom. Topology 8 (2008), 945951.CrossRefGoogle Scholar
12.Grbić, J. and Wu, J., Natural transformations of tensor algebras and representations of combinatorial groups, Alg. Geom. Topology 6 (2006), 21892228.CrossRefGoogle Scholar
13.Green, J. A., Polynomial representation of GLn, Lecture Notes in Mathematics, Volume 830 (Springer, 1980).Google Scholar
14.James, G. and Kerber, A., The representation theory of the symmetric groups, Encyclopediaof Mathematics and Its Applications, Volume 16 (Cambridge University Press, 1981).Google Scholar
15.Kuhn, N., Generic representation theory of the finite general linear groups and the Steenrod algebra, I, Am. J. Math. 116 (1994), 327360.CrossRefGoogle Scholar
16.Kuhn, N., Generic representation theory of the finite general linear groups and the Steenrod algebra, II, K-Theory 8 (1994), 395428.CrossRefGoogle Scholar
17.Kuhn, N., Generic representation theory of the finite general linear groups and the Steenrod algebra, III, K-Theory 9 (1995), 273303.CrossRefGoogle Scholar
18.Milnor, J. and Moore, J., On the structure of Hopf algebras, Annals Math. 81 (1965), 211264.CrossRefGoogle Scholar
19.Schur, I., Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zourden lassen, in Gesammelte Abhandlungen I, pp. 170 (Springer, 1973).CrossRefGoogle Scholar
20.Selick, P. S., Theriault, S. D. and Wu, J., Functorial decompositions of looped coassociative co-H spaces, Can. J. Math. 58 (2006), 877896.CrossRefGoogle Scholar
21.Selick, P. S., Theriault, S. D. and Wu, J., Functorial homotopy decompositions of looped co-H-spaces, Math. Z. 267 (2011), 139153.CrossRefGoogle Scholar
22.Selick, P. S. and Wu, J., On natural decompositions of loop suspensions and natural coalgebra decompositions of tensor algebras, Memoirs of the American Mathematical Society, Volume 148, Number 701 (American Mathematical Society, Providence, RI, 2000).Google Scholar
23.Selick, P. S. and Wu, J., On functorial decompositions of self-smash products, Manuscr. Math. 111 (2003), 435457.CrossRefGoogle Scholar
24.Selick, P. S. and Wu, J., The functor A min on p-local spaces, Math. Z. 253 (2006), 435451.CrossRefGoogle Scholar
25.Selick, P. S. and Wu, J., Some calculations of Liemax(n) for low n, J. Pure Appl. Alg. 212 (2008), 25702580.CrossRefGoogle Scholar
26.Theriault, S. D., Homotopy decompositions involving the loops of coassociative Co-H spaces, Can. J. Math. 55 (2003), 181203.CrossRefGoogle Scholar
27.Whitehead, G. W., Elements of homotopy theory, Graduate Texts in Mathematics (Springer, 1978).Google Scholar
28.Wu, J., On combinatorial calculations of the James-Hopf maps, Topology 37 (1998), 10111023.CrossRefGoogle Scholar
29.Wu, J., Homotopy theory of the suspensions of the projective plane, Memoirs of the American Mathematical Society, Volume 162, Number 769 (American Mathematical Society, Providence, RI, 2003).Google Scholar
30.Wu, J., On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups, Memoirs of the American Mathematical Society, Volume 180, Number 851 (American Mathematical Society, Providence, RI, 2006).Google Scholar
31.Wu, J., The functor A min for (p – 1)-cell complexes and EHP sequences, Israel J. Math. 178 (2010), 349391.CrossRefGoogle Scholar