No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
Let S be a regular semigroup. An inverse subsemigroup S° of S is called an inverse transversal if S° contains a unique inverse of each element of S. An inverse transversal S° of S is called multiplicative if x°xyy° is an idempotent of S° for every x, y∈S, where x° denotes the unique inverse of x∈S in S°. In Section 1, we obtain a necessary and sufficient condition in order for inverse transversals to be multiplicative.