Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-09T16:59:20.558Z Has data issue: false hasContentIssue false

Noetherianity of twisted Zhu’s algebras and bimodules

Published online by Cambridge University Press:  03 February 2025

Jianqi Liu*
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA, USA

Abstract

In this paper, we show that for a large natural class of vertex operator algebras (VOAs) and their modules, the Zhu’s algebras and bimodules (and their g-twisted analogs) are Noetherian. These carry important information about the representation theory of the VOA, and its fusion rules, and the Noetherian property gives the potential for (non-commutative) algebro-geometric methods to be employed in their study.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Buhl, G. and Dong, C., Rationality, regularity, and C 2-cofiniteness, Trans. Amer. Math. Soc. 256(8): (2003), 33913402.CrossRefGoogle Scholar
Addabbo, D. and Barron, K., On generators and relations for higher level Zhu algebras and applications, J. Algebra 623(1): (2023), 496540.CrossRefGoogle Scholar
algebra, Z., C 2-algebra and C 2-cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261295.Google Scholar
Buhl, G., A spanning set for VOA modules, J. Algebra 254(1): (2002), 125151.CrossRefGoogle Scholar
Damiolini, C., Gibney, A. and Krashen, D., Conformal blocks on smoothings via mode transition algebras. arXiv:2307.03767.Google Scholar
Damiolini, C., Gibney, A. and Krashen, D., Morita equivalences for Zhu’s associative algebra and mode transition algebras. arXiv:2403.11855.Google Scholar
Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde, H., The operator algebra of orbifold models, Commun. Math. Phys. 123(3): (1989), 485526.CrossRefGoogle Scholar
Dong, C. and Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, Volume 112 (Birkhäuser, Boston, MA, 1993).CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Certain associative algebras similar to $U(sl_2)$ and Zhu’s algebra $A(V_L)$, J. Algebra 196(2): (1997), 532551.CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices 8 (1998), 389397.CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Vertex operator algebras and associative algebras, J. Algebra 206(6): (1998), 6796.CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), 571600.CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214(1): (2000), 156.CrossRefGoogle Scholar
Dong, C., Li, H. and Mason, G., Vertex Lie algebra, vertex Poisson algebras and vertex algebras, Contemp. Math. In: Proceedings of an International Conference at University of Virginia, Volume 297, May 2000, (Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, 2002).CrossRefGoogle Scholar
Dong, C. and Nagatomo, K., Representations of vertex operator algebra $V_L^+$ for rank one lattice L, Comm. Math. Phys. 202(1): (1999), 169195.CrossRefGoogle Scholar
Frenkel, I. B., Huang, Y.-Z. and Lepowsky, J., On axiomatic approaches to vertx operator algebras and modules, Memoirs Amer. Math. Soc. 104(494): (1993), .CrossRefGoogle Scholar
Frenkel, I. B., Lepowsky, J. and Meurman, A., Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, Volume 134 (Academic Press, NewYork, 1988).Google Scholar
Frenkel, I. B. and Zhu, Y., Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66(1): (1992), 123168.CrossRefGoogle Scholar
Gaberdiel, M. R. and Neitzke, A., Rationality, quasirationality and finite W-algebras, Commun. Math. Phys. 238 (2003), 305331.CrossRefGoogle Scholar
Gao, X., Liu, J. and Zhu, Y., Twisted restricted conformal blocks of vertex operator algebras I: g-twisted correlation functions and fusion rules. arXiv:2312.16278.Google Scholar
Goodearl, K. R. and Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts Series, Volume 16 (Cambridge University Press, Cambridge, 1989).Google Scholar
He, X., Higher level Zhu algebras are subquotients of universal enveloping algebras, J. Algebra 491(1): (2017), 265279.CrossRefGoogle Scholar
Huang, Y.-Z., Differential equations and intertwining operators, Comm. Contemp. Math. 7(03): (2005), 375400.CrossRefGoogle Scholar
Huang, Y.-Z., Generalized twisted modules associated to general automorphisms of a vertex operator algebra, Comm. Math. Phys. 298(1): (2010), 265292.CrossRefGoogle Scholar
Huang, Y.-Z., Modular invariance of (logarithmic) intertwining operators, arXiv:2305.15152.Google Scholar
Kac, V. G., Vertex Algebras for Beginners, University Lecture Series, Volume 10 (Providence, RI: American Mathematical Society, 1997).Google Scholar
Karel, M. and Li, H., Certain generating subspaces for vertex operator algebras, J. Algebra 217(2): (1999), 393421.CrossRefGoogle Scholar
Lepowsky, J. and Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics, Volume 227 (Birkhäuser Boston, MA, 2004).Google Scholar
Li, H., Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96(3): (1994), 279297.CrossRefGoogle Scholar
Li, H., Some finiteness properties of regular vertex operator algebras, J. Algebra 212(2) (1999), .CrossRefGoogle Scholar
Li, H., Determine fusion rules by A(V) modules and bimodules, J. Algebra 212 (1999), 515556.CrossRefGoogle Scholar
Li, H., Abelianizing vertex algebras, Comm. Math. Phys. 259 (2005), 391411.CrossRefGoogle Scholar
Liu, J., A proof of the fusion rules theorem, Comm. Math. Phys. 401(2): (2023), 12371290.CrossRefGoogle Scholar
Liu, J., Borel and parabolic-type subalgebras of the lattice vertex operator algebras. arXiv:2402.02278.Google Scholar
McConnell, J. C. and Robson, J. C., Noncommutative Noetherian Rings, Graduate Studies in Mathematics, Volume 30 (Providence, RI: American Mathematical Society, 1987).Google Scholar
Miyamoto, M., Modular invariance of vertex operator algebras satisfying C 2-cofiniteness, Duke Math. J. 122(1): (2004), 5191.CrossRefGoogle Scholar
Qifen Jiang, Q. and Jiao, X., Bimodule and twisted representation of vertex operator algebras, Sci. China Math. 59(2): (2016), 397410.CrossRefGoogle Scholar
Sierra, S. J. and Walton, C., The universal enveloping algebra of the Witt algebra is not Noetherian, Adv. Math. 262 (2014), 239260.CrossRefGoogle Scholar
Wang, W., Rationality of Virasoro vertex operator algebra, Duke Math. J. (IMRN) 7(7): (1993), 197211.Google Scholar
Yang, Y. and Liu, J., Endomorphism property of vertex operator algebras over arbitrary fields, J. Algebra 622 (2023), 450468.CrossRefGoogle Scholar
Zhu, Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9(1): (1996), 237302.CrossRefGoogle Scholar