No CrossRef data available.
Article contents
On class 2 quotients of linear groups
Part of:
Representation theory of groups
Published online by Cambridge University Press: 09 June 2021
Abstract
In this paper, we study the relation of the size of the class two quotients of a linear group and the size of the vector space. We answer a question raised in Keller and Yang [Class 2 quotients of solvable linear groups, J. Algebra 509 (2018), 386-396].
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 64 , Issue 3 , August 2021 , pp. 590 - 593
- Copyright
- Copyright © The Author(s) 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
Aschbacher, M. and Guralnick, R. M., On abelian quotients of primitive groups, Proc. Amer. Math. Soc. 107 (1989), 89–95.CrossRefGoogle Scholar
Dixon, J. D., The Fitting subgroup of a linear solvable group, J. Austral. Math. Soc. 7 (1967), 417–424.CrossRefGoogle Scholar
Flavell, P., Class two sections of finite classical groups, J. London Math. Soc. (2) 52(1) (1995), 111–120.CrossRefGoogle Scholar
Glauberman, G., On Burnside's other $p^{a}q^{b}$ theorem, Pacific J. Math. 56 (1975), 469–476.CrossRefGoogle Scholar
Keller, T. M. and Yang, Y., Abelian quotients and orbit sizes of solvable linear groups, Israel J. Math. 211(1) (2016), 23–44.CrossRefGoogle Scholar
Keller, T. M. and Yang, Y., Class 2 quotients of solvable linear groups, J. Algebra 509 (2018), 386–396.CrossRefGoogle Scholar
Keller, T. M. and Yang, Y., Abelian quotients and orbit sizes of finite groups, Sci. China Math. 63(8) (2020), 1523–1534.CrossRefGoogle Scholar
Qian, G. and Yang, Y., Large orbit sizes in finite group actions, J. Pure Appl. Algebra 225(1) (2021), 106458, 17 pp.CrossRefGoogle Scholar