No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
The theory of graphical integration is founded on the graphical integration of parabolic arcs. The details and the different technical applications of these problems are developed in the fundamental work of J. Massau; we find there very simple pure constructive methods for the case of parabolas till the 3rd order.
1 Mémoire sur l'intégration graphique et ses applications (Annales de l'Assoc, des ingénieurs sortis des écoles spéciales de Gand, 1878–1890), chap. II., §2,3, 4.Google Scholar
2 Calcul graphique et Nomographie (Encyclop. scientif.; Paris, O. Doin, 1908), Part I., chap. II.Google Scholar
3 See d'Ocagne, p. 95–101.
4 Die Torsion eines Rotationskörpers um seine Axe (Göttingen, 1907, p. 14–17; and Zeitschrijt für Math, und Phys., 1907).Google Scholar
3 See d'Ocagne, p. 95–101.
5 See d'Ocagne, p. 75–77.
6 See Muirhead, R. F.. “A method of successive graphical integrations” (Proc. Ed. Math. Soc, Vol. XXIX., 1910–1911).Google Scholar