Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T09:03:01.979Z Has data issue: false hasContentIssue false

On the “Flat” Regions of Integral Functions of Finite Order

Published online by Cambridge University Press:  20 January 2009

J. M. Whittaker
Affiliation:
Pembroke College, Cambridge.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term “flat” is used to indicate that the minimum modulus of a function in a region is (in some sense) of the same order as the maximum modulus. Some properties concerned with this notion are described below. They came to light during an attempt to answer a question put to me by Professor Littlewood.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1930

References

REFERENCES

1.Besicovitch, A. S. “On integral functions of order < 1.” Math. Ann., 97 (1927), 677695.Google Scholar
2.Boutroux, P.Sur quelques propriétés des fonctions entières.” Acta. Math., 28 (1904), 97224.Google Scholar
3.Ferrar, W. L.On the cardinal function of interpolation theory.” Proc. Boy. Soc., Edin, 46 (1926), 323333.Google Scholar
4.Ferrar, W. L.Conditionally convergent double series.” Proc. Lond. Math. Soc., 29 (1928), 322330.Google Scholar
5.Hardy, G. H.Note on 12. Proc. Camb. Phil. Soc., 20 (1920), 208209.Google Scholar
6.Hardy, G. H.The mean value of the modulus of an analytic function.” Proc Lond. Math. Soc., 14 (1915), 269277.Google Scholar
7.Hardy, G. H.On two theorems of F. Carlson and S. Wigert.” Acta. Math., 42 (1920), 327339.Google Scholar
8.Lindelöf, E.Sur un théorème de M. Hadamard dans la théorie des fonctions entières.“ Rendiconti Palermo, 25 (1908), 228.Google Scholar
9.Littlewood, J. E.On the asymptotic approximation of integral functions of zero order.” Proc Lond. Math. Soc., 5 (1907), 361410.Google Scholar
10.Littlewood, J. E.A general theorem on integral functions of finite order.” Proc Lond. Math. Soc., 6 (1908), 189204.Google Scholar
11.Pólya, G.On the minimum modulus of integral functions of order less than unity.” Journal Lond. Math. Soc., 1 (1926), 7886.Google Scholar
12.Riesz, M.Sur le principe de Phragmén-Lindelöf.” Proc. Camb. Phil. Soc., 20 (1920), 205207.Google Scholar
13.Valiron, G.Integral Functions. Toulouse, 1923.Google Scholar
14.Valiron, G.Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière.” Annales de Toulouse, 5 (1913), 117257.Google Scholar
15.Whittaker, E. T. and Watson, G. N.Modern Analysis. Cambridge, 1920.Google Scholar
16.Whittaker, J. M.The ‘Fourier’ theory of the cardinal function.” Proc. Edin. Math. Soc., 1 (1928), 169176.Google Scholar
17.Wiman, A.Sur une extension d'un theoreme de M. Hadamard.” Arkiv för Mat., Astr. och Fysik, 2 (1905), Nr. 14.Google Scholar
18.Wiman, A.Über eine Eigenschaft der ganzen Funktionen von der Höhe Null.” Math. Ann., 76 (1915), 197211.Google Scholar