Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:57:45.706Z Has data issue: false hasContentIssue false

Optimal control of a nonlinear elliptic population system

Published online by Cambridge University Press:  20 January 2009

Ovide Arino
Affiliation:
IPRA, Département de Mathematiques 64000, Pau, France
Juan-Aurelio Montero-Sánchez
Affiliation:
Departamento de Análisis Matemático, Universidad de Granada, 18071 Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An optimal control for a nonlinear system is considered. The existence of an optimal-control pair, the characterization of the optimal control in terms of the optimal system and the uniqueness of solutions for the control problem are established. The uniqueness requires smallness assumptions on parameters in the functional.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1. Amann, H., Fixed points equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620709.CrossRefGoogle Scholar
2. Cañada, A., Gámez, J. L. and Montero, J. A., Study of a nonlinear optimal control problem for diffusive nonlinear elliptic equations of logistic type, SIAM J. Control Optim. 36 (1998), 11711189.CrossRefGoogle Scholar
3. Clarke, F. H., Optimization and nonsmooth analysis, Classics in Applied Mathematics, vol. 5 (SIAM, Philadelphia, 1990).Google Scholar
4. Correa, F. J. and Souto, M. A., On maximun principles for cooperative elliptic systems via fixed point index, Nonlinear Analysis 26 (1996), 9971006.CrossRefGoogle Scholar
5. Ekeland, I. and Teman, R., Convex analysis and variational problems, Studies in Mathematics and its Applications, vol. 1 (North-Holland, Amsterdam, (1976).Google Scholar
6. Gámez, J. L. and Montero, J. A., Uniqueness of the optimal control for a Lotka–Volterra control problem with a large crowding effect, ESSAIM: Control, Optimisation and Calculus of Variations 2 (1997), 112 (http://www.emath.fr/cocv/).Google Scholar
7. Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, 2nd edn (Springer, Berlin, 1983).Google Scholar
8. He, H., Leung, A. and Stojanovic, S., Periodic optimal control for competing parabolic Volterra–Lotka-type systems, J. Comput. Appl. Math. 52 (1994), 199217.CrossRefGoogle Scholar
9. Krasnosel'skii, M. A., Positive solutions of operator equations (Noordhoff, Groningen, 1964).Google Scholar
10. Leung, A., Optimal harvesting-coefficient control of steady-state prey–predator diffusive Volterra–Lotka systems, Appl. Math. Optim. 31 (1995), 219241.CrossRefGoogle Scholar
11. Leung, A. and Stojanovic, S., Optimal control for elliptic Volterra–Lotka type equations, J. Math. Analysis Appl. 173 (1993), 603619.CrossRefGoogle Scholar
12. Renardy, M. and Rogers, R. C., An introduction to partial differential equations, Texts in Applied Mathematics, vol. 13 (Springer, Berlin, 1993).Google Scholar
13. Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 9791000.CrossRefGoogle Scholar