Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T00:34:52.022Z Has data issue: false hasContentIssue false

Rank properties in finite inverse semigroups

Published online by Cambridge University Press:  20 January 2009

Maria Isabel
Affiliation:
Departamento de Matemática, Universidade dos Açores, Rua da Mãe de Deus, 9500 Ponta Delgada (Açores), Portugal (isamr@uac.pt)
Marques Ribeiro
Affiliation:
Departamento de Matemática, Universidade dos Açores, Rua da Mãe de Deus, 9500 Ponta Delgada (Açores), Portugal (isamr@uac.pt)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two possible concepts of rank in inverse semigroup theory, the intermediate I-rank and the upper I-rank, are investigated for the finite aperiodic Brandt semigroup. The so-called large I-rank is found for an arbitrary finite Brandt semigroup, and the result is used to obtain the large rank of the inverse semigroup of all proper subpermutations of a finite set.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2000

References

1.Gomes, G. M. S. and Howie, J. M., On the ranks of certain finite semigroups of transformations, Math. Proc. Camb. Phil. Soc. 101 (1987), 395403.CrossRefGoogle Scholar
2.Howie, J. M., Fundamentals of semigroup theory (Oxford University Press, 1995).CrossRefGoogle Scholar
3.Howie, J. M. and Marques Ribeiro, M. I., Rank properties in finite semigroups Commun. Algebra 27 (1999), 53335347.CrossRefGoogle Scholar
4.Howie, J. M. and Marques Ribeiro, M. I., Rank properties in finite semigroups, II, The small rank and the large rank, S. E. Asian Bull. Math. 24 (2000), 231237.CrossRefGoogle Scholar
5.Marczewski, E., Independence in abstract algebras: results and problems, Colloq. Math. 14 (1966), 169188.CrossRefGoogle Scholar
6.Petrich, M., Inverse semigroups (Wiley, 1984).Google Scholar