Article contents
The relative Bruce–Roberts number of a function on a hypersurface
Published online by Cambridge University Press: 19 August 2021
Abstract
We consider the relative Bruce–Roberts number $\mu _{\textrm {BR}}^{-}(f,\,X)$ of a function on an isolated hypersurface singularity $(X,\,0)$
. We show that $\mu _{\textrm {BR}}^{-}(f,\,X)$
is equal to the sum of the Milnor number of the fibre $\mu (f^{-1}(0)\cap X,\,0)$
plus the difference $\mu (X,\,0)-\tau (X,\,0)$
between the Milnor and the Tjurina numbers of $(X,\,0)$
. As an application, we show that the usual Bruce–Roberts number $\mu _{\textrm {BR}}(f,\,X)$
is equal to $\mu (f)+\mu _{\textrm {BR}}^{-}(f,\,X)$
. We also deduce that the relative logarithmic characteristic variety $LC(X)^{-}$
, obtained from the logarithmic characteristic variety $LC(X)$
by eliminating the component corresponding to the complement of $X$
in the ambient space, is Cohen–Macaulay.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 64 , Issue 3 , August 2021 , pp. 662 - 674
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
- 3
- Cited by