Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T07:51:40.601Z Has data issue: false hasContentIssue false

Some Remarks on the Wiman–Edge Pencil

Published online by Cambridge University Press:  15 February 2018

Alexis G. Zamora*
Affiliation:
U. A. Matemáticas, U.de Zacatecas, Camino a la Bufa y Calzada Solidaridad, C.P. 98000, Zacatecas, Zac.Mexico (alexiszamora06@gmail.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We rewrite in modern language a classical construction by W. E. Edge showing a pencil of sextic nodal curves admitting A5 as its group of automorphism. Next, we discuss some other aspects of this pencil, such as the associated fibration and its connection to the singularities of the moduli of six-dimensional abelian varieties.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

References

1Beauville, A., Le nombre minimum de fibers singulieres d'un courbe stable sur ℙ1, Asterisque 86 (1981), 97108.Google Scholar
2Candelas, P., De La Ossa, X., Van Geemen, B. and Van Straten, D., Lines on the Dwork pencil of quintic threefolds, Adv. Theor. Math. Phys. 16 (2012), 17791836.CrossRefGoogle Scholar
3Cheltsov, I. and Shramov, C., Cremona groups and the icosahedron, Monographs and Research Notes in Mathematics (CRC Press, Boca Raton, 2016).Google Scholar
4Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math. 77(4) (1955), 778782.CrossRefGoogle Scholar
5Dolgachev, I., Classical algebraic geometry: a modern view (Cambridge University Press, 2012).CrossRefGoogle Scholar
6Edge, W. L., A pencil of four-nodal plane sextics, Math. Proc. Cambridge Philos. Soc. 89 (1981), 413421.CrossRefGoogle Scholar
7Gong, G., Lu, X. and Tan, S.-L., Families of curves over ℙ1 with 3 singular fibres, C. R. Math. Acad. Sci. Paris 351(9–10) (2013), 375380.CrossRefGoogle Scholar
8González-Aguilera, V. and Rodríguez, R. E., A pencil in with three points at the boundary, Geom. Dedicata 42 (1992), 255265.CrossRefGoogle Scholar
9González-Aguilera, V., Muñoz-Porras and Zamora, A. G., On the irreducible components of the singular locus of A g, J. Algebra 240 (2001), 230250.CrossRefGoogle Scholar
10González-Aguilera, V., Muñoz-Porras and Zamora, A. G., On the irreducible components of the singular locus of A g II, Proc. Amer. Math. Soc. 140(2) (2012), 479492.CrossRefGoogle Scholar
11Inoue, N. and Kato, F., On the geometry of Wiman's sextic, J. Math. Kyoto Univ. 45(4) (2005), 743757.Google Scholar
12Tan, S.-L., The minimal number of singular fibers of a semi stable curve over ℙ1, J. Algebraic Geom. 4 (1995), 591596.Google Scholar
13Tan, S.-L., Tu, Y. and Zamora, A. G., On complex surfaces with 5 or 6 semistable singular fibers over ℙ1, Math. Z. 249 (2005), 427438.CrossRefGoogle Scholar
14Wiman, A., Zur Theorie del endlichen Gruppen von birationalen Transformationen in der Ebene, Math. Ann. 48 (1895), 195240.CrossRefGoogle Scholar
15Winger, R., On the invariants of the ternary icosahedral group, Math. Ann. 93 (1925), 210216.CrossRefGoogle Scholar