Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T18:05:39.138Z Has data issue: false hasContentIssue false

Some Theorems in Group Velocity

Published online by Cambridge University Press:  20 January 2009

P. M. Davidson
Affiliation:
University College, Swansea.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a medium in which the equation satisfied by a disturbance ø(x,t) is capable of solutions of the form sin(vxwt), with v and ω real but not necessarily of the same sign. If the phase velocity U = ω/v is not of constant magnitude the medium is said to be dispersive, and the group velocity V may conveniently be defined as dω/v, an expression easily re-written in other familiar forms. From this definition the two physical interpretations of V may easily be seen. In one interpretation we consider a superposition of two harmonic waves with slightly different v (and ω); the velocity of advance of the group form, being the velocity of advance of a point at which the two waves have a constant phase difference, is dω/v.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1956

References

1 The point and dash mean ∂/∂t and ∂/∂x; and the range of all the integrals in the paper is from —∞ to ∞, except where otherwise obvious.

1 It will be found that there are also a large number of such expressions containing higher differential coefficients.

1 Similarly, of course, in media where there are relations of the form and the quantity is independent of time, and the expression for it as E multiplied by an average of V 2 is easily writtan down. It is also evident that, owing to the ultimate sorting out of the frequencies in space, there will be a large number of X m's whose m-th time differential coefficients, though not constant, will tend with increasing time to constant values given by simple expressions.