Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T09:43:37.535Z Has data issue: false hasContentIssue false

Symmetry of Lie algebras associated with (ε, δ)-Freudenthal-Kantor triple system

Published online by Cambridge University Press:  13 July 2015

Noriaki Kamiya
Affiliation:
Department of Mathematics, University of Aizu, Aizuwakamatsu, Japan (kamiya@u-aizu.ac.jp)
Susumu Okubo
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA (okubo@pas.rochester.edu)

Abstract

Symmetry groups of Lie algebras and superalgebras constructed from (∈, δ)-Freudenthal-Kantor triple systems have been studied. In particular, for a special (ε, ε)-Freudenthal–Kantor triple, it is the SL(2) group. Also, the relationship between two constructions of Lie algebras from structurable algebras has been investigated.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allison, B. N., A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Annalen 237 (1978), 133156.Google Scholar
2. Allison, B. N. and Faulkner, J. R., Non-associative coefficient algebras for Steinberg unitary Lie algebras, J. Alg. 161 (1993), 119.Google Scholar
3. Allison, B. N., Benkart, G. and Gao, Y., Lie algebras graded by the root systems BC r , r ⩾ 2, Memoirs of the American Mathematical Society, Volume 158 (American Mathematical Society, Providence, RI, 2002).Google Scholar
4. Benkart, G. and Smirnov, O., Lie algebras graded by the root system BC 1 , J. Lie Theory 13 (2003), 91132.Google Scholar
5. Elduque, A., The magic square and symmetric composition, Rev. Mat. Ibero. 20 (2004), 477493.Google Scholar
6. Elduque, A. and Okubo, S., Lie algebras with S4-action and structurable algebras, J. Alg. 307 (2007), 864890.Google Scholar
7. Elduque, A. and Okubo, S., S4-symmetry on the Tits construction of exceptional Lie algebras and superalgebras, Publ. Mat. 52 (2008), 315346.Google Scholar
8. Elduque, A. and Okubo, S., Lie algebras with S3 or S4-action and generalized Malcev algebras, Proc. R. Soc. Edinb. A 139 (2009), 321357.Google Scholar
9. Elduque, A. and Okubo, S., Special Freudenthal–Kantor triple systems and Lie algebras with dicyclic symmetry, Proc. R. Soc. Edinb. A 141 (2011), 12251262.Google Scholar
10. Elduque, A., Kamiya, N. and Okubo, S., Left unital Kantor triple systems and structurable algebra, Linear Multilinear Alg. 62(10) (2014), 12931313.Google Scholar
11. Elgendy, H., Universal associative envelopes of nonassociative triple systems, Commun. Alg. 42(4) (2014), 17851810.Google Scholar
12. Kamiya, N., A construction of simple Lie algebras over C from balanced Freudenthal–Kantor triple systems, in Contributions to general algebra, Volume 7, pp. 205213 (Hölder-Pickler-Tempsky, Vienna, 1991).Google Scholar
13. Kamiya, N. and Okubo, S., On δ-Lie supertriple systems associated with (ε, δ)- Freudenthal–Kantor triple systems, Proc. Edinb. Math. Soc. 43 (2000), 243260.Google Scholar
14. Kamiya, N., Mondoc, D. and Okubo, S., A structure theory of (–1, –1)-Freudenthal–Kantor triple systems, Bull. Austral. Math. Soc. 81 (2010), 132155.Google Scholar
15. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, I (Wiley, 1963).Google Scholar
16. Kobayashi, S. and Nomizu, K., Foundations of differential geometry, II (Wiley, 1968).Google Scholar
17. Kochetev, M., Gradings on finite-dimensional simple Lie algebras, Acta Appl. Math. 108 (2009), 101129.Google Scholar
18. Meyberg, K., Eine Theorie der Freudenthalschen Triple systeme, I, II, Indagationes Math. 30 (1968), 162190.Google Scholar
19. Okubo, S., Symmetric triality relations and structurable algebra, Linear Alg. Applic. 396 (2005), 189222.Google Scholar
20. Yamaguti, K. and Ono, S., On representations of Freudenthal–Kantor triple system U(ε, δ), Bull. Fac. School Educ. Hiroshima Univ. 7 (1984), 4351.Google Scholar