Article contents
Tits Buildings and K-Stability
Published online by Cambridge University Press: 30 January 2019
Abstract
A polarized variety is K-stable if, for any test configuration, the Donaldson–Futaki invariant is positive. In this paper, inspired by classical geometric invariant theory, we describe the space of test configurations as a limit of a direct system of Tits buildings. We show that the Donaldson–Futaki invariant, conveniently normalized, is a continuous function on this space. We also introduce a pseudo-metric on the space of test configurations. Recall that K-stability can be enhanced by requiring that the Donaldson–Futaki invariant is positive on any admissible filtration of the co-ordinate ring. We show that admissible filtrations give rise to Cauchy sequences of test configurations with respect to the above mentioned pseudo-metric.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 62 , Issue 3 , August 2019 , pp. 799 - 815
- Copyright
- Copyright © Edinburgh Mathematical Society 2019
References
- 3
- Cited by