Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T23:27:01.036Z Has data issue: false hasContentIssue false

UNBOUNDED B-FREDHOLM OPERATORS ON HILBERT SPACES

Published online by Cambridge University Press:  28 July 2008

M. Berkani
Affiliation:
Département de Mathématiques, Faculté des Sciences, Université Mohammed I, Oujda, Morocco (berkani@sciences.univ-oujda.ac.ma)
N. Castro-González
Affiliation:
Facultad de Informática, Universidad Politécnica de Madrid, 28660 Madrid, Spain (nieves@fi.upm.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with the study of a class of closed linear operators densely defined on a Hilbert space $H$ and called B-Fredholm operators. We characterize a B-Fredholm operator as the direct sum of a Fredholm closed operator and a bounded nilpotent operator. The notion of an index of a B-Fredholm operator is introduced and a characterization of B-Fredholm operators with index $0$ is given in terms of the sum of a Drazin closed operator and a finite-rank operator. We analyse the properties of the powers $T^m$ of a closed B-Fredholm operator and we establish a spectral mapping theorem.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2008