No CrossRef data available.
Article contents
Uniform Bands
Published online by Cambridge University Press: 18 July 2014
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A semigroup B in which every element is an idempotent can be embedded into such a semigroup B′, where all the local submonoids are isomorphic, and in such a way that B and B′ satisfy the same equational identities. In view of the properties preserved under this embedding, a corresponding embedding theorem is obtained for regular semigroups whose idempotents form a subsemigroup.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 57 , Issue 3 , October 2014 , pp. 575 - 587
- Copyright
- Copyright © Edinburgh Mathematical Society 2014
References
1.Broeksteeg, R., A concept of variety for regular biordered sets, Semigroup Forum 49 (1994), 335–348.CrossRefGoogle Scholar
2.Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, I (American Mathematical Society, Providence, RI, 1961).Google Scholar
3.Clifford, A. H. and Preston, G. B., The algebraic theory ofsemigroups, II (American Mathematical Society, Providence, RI, 1967).Google Scholar
8.Hall, T. E., On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc. 1 (1969), 195–208.Google Scholar
9.Hall, T. E., On orthodox semigroups and uniform and anti-uniform bands, J. Alg. 16 (1970), 204–217.CrossRefGoogle Scholar
10.Hall, T. E., On regular semigroups whose idempotents form a subsemigroup: addenda, Bull. Austral. Math. Soc. 3 (1970), 287–288.CrossRefGoogle Scholar
13.Howie, J. M., An introduction to semigroup theory, London Mathematical Society Monographs, Volume 7 (Academic, 1976).Google Scholar
14.Howie, J. M., Fundamentals of semigroup theory, London Mathematical Society Monographs, Volume 12 (Clarendon, Oxford, 1995).CrossRefGoogle Scholar
15.Kadourek, J. and Polák, L., On the word problem for free completely regular semigroups, Semigroup Forum 34 (1986), 127–138.Google Scholar
16.Leemans, H. and Pastijn, F., Embedding inverse semigroups in bisimple congruence-free inverse semigroups, Q. J. Math. (2) 34 (1983), 455–458.CrossRefGoogle Scholar
17.NAMBOORIPAD, K. S. S., Structure of regular semigroups, I, Memoirs of the American Mathematical Society, Volume 22, Number 224 (American Mathematical Society, Providence, RI, 1979).Google Scholar
18.Nambooripad, K. S. S., Pseudosemilattices and biordered sets, I, Bull. Belg. Math. Soc. Simon Stevin 55 (1981), 103–110.Google Scholar
19.Oliveira, L., Varieties of pseudosemilattices, PhD thesis, Marquette University, Milwaukee (2004).Google Scholar
21.Pastijn, F., Congruences on regular semigroups: a survey, in Proceedings of the 1984 Marquette conference on semigroups, pp. 159–175 (Marquette University, Milwaukee, 1984).Google Scholar
22.Pastijn, F., The idempotents in a periodic semigroup, Int. J. Alg. Comput. 6 (1996), 511–540.Google Scholar
23.Pastijn, F. J. and Petrich, M., Regular semigroups as extensions, Research Notes in Mathematics, Volume 136 (Pitman, Boston, MA, 1985).Google Scholar
24.Pastijn, F. and Petrich, M., Congruences on regular semigroups, Trans. Am. Math. Soc. 295 (1986), 607–633.Google Scholar
26.Płonka, J., On a method of construction of abstract algebras, Fund. Math. LXI (1967), 183–189.Google Scholar
27.Plonka, J., Sums of direct systems of abstract algebras, Bull. Polish Acad. Sci. Math. XV(3) (1967), 133–135.Google Scholar
28.Preston, G. B., Embedding any semigroup in a D-simple semigroup, Trans. Am. Math. Soc. 93 (1959), 351–355.Google Scholar
29.Reilly, N. R., Embedding inverse semigroups in bisimple inverse semigroups, Q. J. Math. (2) 16 (1965), 183–187.CrossRefGoogle Scholar
30.Trotter, P. G., Free completely regular semigroups, Glasgow Math. J. 25 (1984), 241–254.Google Scholar
You have
Access