Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:57:56.007Z Has data issue: false hasContentIssue false

Weakly s-supplementally embedded minimal subgroups of finite groups

Published online by Cambridge University Press:  17 August 2011

Tao Zhao
Affiliation:
School of Mathematical Science, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China (xhli@suda.edu.cn)
Xianhua Li
Affiliation:
School of Mathematical Science, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China (xhli@suda.edu.cn)
Yong Xu
Affiliation:
School of Mathematical Science, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China (xhli@suda.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that G is a finite group and H is a subgroup of G. We call H a weakly s-supplementally embedded subgroup of G if there exist a subgroup T of G and an s-quasinormally embedded subgroup Hse of G contained in H such that G = HT and HTHse. We investigate the influence of the weakly s-supplementally embedded property of some minimal subgroups on the structure of finite groups. As an application of our results, some earlier results are generalized.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2011

References

1.Ballester-Bolinches, A., -normalizers and local definitions of saturated formations of finite groups, Israel J. Math. 67 (1989), 312326.CrossRefGoogle Scholar
2.Ballester-Bolinches, A. and Pedraza-Aguilera, M. C., On minimal subgroups of finite groups, Acta Math. Hungar. 73(4) (1996), 335342.CrossRefGoogle Scholar
3.Ballester-Bolinches, A. and Pedraza-Aguilera, M. C., Sufficient conditions for supersolvability of finite groups, J. Pure Appl. Alg. 127 (1998), 113118.CrossRefGoogle Scholar
4.Ballester-Bolinches, A. and Wang, Y., Finite groups with some c-normal minimal subgroups, J. Pure Appl. Alg. 153 (2000), 121127.CrossRefGoogle Scholar
5.Ballester-Bolinches, A., Wang, Y. and Guo, X., C-supplemented subgroups of finite groups, Glasgow Math. J. 42 (2000), 383389.CrossRefGoogle Scholar
6.Buckley, J., Finite groups whose minimal subgroups are normal, Math. Z. 116 (1970), 1517.CrossRefGoogle Scholar
7.Derr, J. B., Deskins, W. E. and Mukherjee, N. P., The influence of minimal p-subgroups on the structure of finite groups, Arch. Math. 45 (1985), 14.CrossRefGoogle Scholar
8.Doerk, K., Minimal nicht uberauflosbare, endliche Gruppen, Math. Z. 91 (1966), 198205.CrossRefGoogle Scholar
9.Doerk, K. and Hawkes, T., Finite soluble groups (Walter de Gruyter, Berlin, 1992).CrossRefGoogle Scholar
10.Guo, W., Xie, F. and Li, B., Some open questions in the theory of generalized permutable subgroups, Sci. China A 52 (2009), 113.CrossRefGoogle Scholar
11.Huppert, B., Endliche Gruppen, Volume I (Springer, 1967).CrossRefGoogle Scholar
12.Kegel, O. H., Sylow-Gruppen und abnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205221.CrossRefGoogle Scholar
13.Li, Y., G-covering systems of subgroups for the class of supersolvable groups, Sb. Math. J. 46(3) (2006), 474480.Google Scholar
14.Li, Y. and Wang, Y., On π-quasinormally embedded subgroups of finite group, J. Alg. 281 (2004), 109123.CrossRefGoogle Scholar
15.Li, Y., Wang, Y. and Wei, H., On p-nilpotency of finite groups with some subgroups π-quasinormally embedded, Acta Math. Hungar. 108(4) (2005), 283298.CrossRefGoogle Scholar
16.Shaalan, A., The influence of s-quasinormality of some subgroups on the structure of a finite group, Acta Math. Hungar. 56 (1990), 287293.CrossRefGoogle Scholar
17.Skiba, A. N., On weakly s-permutable subgroups of finite groups, J. Alg. 315 (2007), 192209.CrossRefGoogle Scholar
18.Wang, Y., On c-normality and its properties, J. Alg. 180 (1996), 954965.CrossRefGoogle Scholar