Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T03:47:50.916Z Has data issue: false hasContentIssue false

Y. B. Pesin Dimension theory in dynamical systems: contemporary views and applications, (University of Chicago Press, Chicago, 1998), xi + 304 pp., (cloth) 0 226 66221 7, £44.75 (US$56.00); (paper) 0 226 66222 5, £15.95 (US$19.95).

Published online by Cambridge University Press:  20 January 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Reviews
Copyright
Copyright © Edinburgh Mathematical Society 1999

References

REFERENCES

1.Brown, G., Michon, G. and Peyriére, J., On the multifractal analysis of measures, J. Statist. Phys. 66 (1992), 775790.CrossRefGoogle Scholar
2.Carathéodory, C., Über das lineare Maß von Punktmengen – eine Verallgemeinerung des Längenbegriffs, Nachr. K. Ges. Wiss. Göttingen, Math. -phys. Klasse (1914), 414426.Google Scholar
3.Edgar, G., Integral, probability, and fractal measures (Springer-Verlag, 1997).Google Scholar
4.Falconer, K. J., The geometry of fractal sets (Cambridge University Press, 1985).CrossRefGoogle Scholar
5.Falconer, K. J., Fractal geometry – mathematical foundations and applications (John Wiley & Sons, 1990).CrossRefGoogle Scholar
6.Federer, H., Geometric measure theory (Springer-Verlag, 1969).Google Scholar
7.Hausdorff, F., Dimension und äußeres Maß, Math. Ann. 79 (1918), 157179.CrossRefGoogle Scholar
8.Katok, A. and Hasselblatt, B., Introduction to the modern theory of dynamical systems (Cambridge University Press, 1995).CrossRefGoogle Scholar
9.Mattila, P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability (Cambridge University Press, 1995).CrossRefGoogle Scholar
10.Olsen, L., A multifractal formalism, Adv. Math. 116 (1995), 82196.CrossRefGoogle Scholar
11.Pesin, Y. B., Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys 43 (1988), 111151.CrossRefGoogle Scholar
12.Pesin, Y. B., Generalized spectrum for the dimension: the approach based on Carathéodory's construction, in Constantin Carathéodory: an international tribute (World Sci. Publishing, Teaneck, 1991), 11081119.CrossRefGoogle Scholar
13.Peyriére, J., Multifractal measures, in NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 372 (Kluwer Academic Press, 1992), 175186.Google Scholar
14.Rogers, C. A., Hausdorff measures (2nd edition) (cambridge University Press, 1998).Google Scholar
15.Young, L. -S., Dimension, entropy and Liapunov exponents, Ergodic Theory Dynamical Systems 2 (1982), 109124.CrossRefGoogle Scholar
16.Walters, P., An introduction to ergodic theory (Springer-Verlag, 1982).CrossRefGoogle Scholar