Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T02:12:40.908Z Has data issue: false hasContentIssue false

ZT-subgroups of sharply 3-transitive groups

Published online by Cambridge University Press:  20 January 2009

Heinrich Wefelscheid
Affiliation:
Fachbereich Mathematikder Universität DuisburgLotharstr. 654100 Duisburg 1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A permutation group G operating on a set M is called a ZT-group (Zassenhaus transitive group) if G has the properties (i) and (ii):

(i) G operates 2-transitively on M;

(ii) Ga,b≠{id} and Ga,b,c = {id} for distinct elements a,b,cM.

Here Ga,b = {α ∈ G | α(a) = a and α(b) = b} denotes the stabilizer of {a, b}, and Ga,b,c the stabilizer of {a, b, c}, respectively.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1980

References

REFERENCES

(1) Gorenstein, D., Finite Groups (Harper & Row, New York, 1968).Google Scholar
(2) Karzel, H., Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg, 32 (1968), 191206.CrossRefGoogle Scholar
(3) Kerby, W., Infinite sharply multiple transitive groups (Hamburger Mathematische Einzelschriften, Neue Folge Heft 6, Göttingen 1974, Vandenhoek und Ruprecht).Google Scholar
(4) Kerby, W. and Wefelscheid, H., Über eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur, Abh. Math. Sem. Hamburg 37 (1972), 225235.CrossRefGoogle Scholar
(5) Kerby, W. and Wefelscheid, H., Über eine Klasse von scharf 3-fach transitiven Gruppen, J. F. reine und angew. Mathematik, 268/269 (1974), 1726.Google Scholar
(6) Zassenhaus, H., Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Hamb. Univ. 11 (1934), 1740.Google Scholar