Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T22:54:48.536Z Has data issue: false hasContentIssue false

3D modelling of AGB stars with CO5BOLD

Published online by Cambridge University Press:  30 December 2019

Bernd Freytag
Affiliation:
Dept. of Astronomy & Space Physics, Uppsala University, Box 516, SE-75120 Uppsala, Sweden email: Bernd.Freytag@physics.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Local three-dimensional radiation-hydrodynamics simulations of patches of the surfaces of solar-type stars, that are governed by small-scale granular convection, have helped analyzing and interpreting observations for decades. These models contributed considerably to the understanding of the atmospheres and indirectly also of the interiors and the active layers above the surface of these stars. Of great help was of course the availability of a close-by prototype of these stars – the sun.

In the case of an asymptotic-giant-branch (AGB) star, the convective cells have sizes comparable to the radius of the giant. Therefore, the extensions of the solar-type-star simulations to AGB stars have to be global and cover the entire object, including a large part of the convection zone, the molecule-formation layers in the inner atmosphere, and the dust-formation region in the outer atmosphere. Three-dimensional radiation-hydrodynamics simulations with CO5BOLD show how the interplay of large and small convection cells, waves, pulsations, and shocks, but also molecular and dust opacities of AGB stars create conditions very different from those in the solar atmosphere.

Recent CO5BOLD models account for frequency-dependent radiation transport and the formation of two independent dust species for an oxygen-rich composition. The drop of the comparably smooth temperature distribution below a threshold determines to onset of dust formation, further in, at higher temperatures, for aluminium oxides (Al2O3) than for silicates (Mg2SiO4). An uneven dust distribution is mostly caused by inhomogeneities in the density of the shocked gas.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Arroyo-Torres, B., Wittkowski, M., Chiavassa, A., et al. 2015, A&A, 575, A50 Google Scholar
Asplund, M., Nordlund, Å., Trampedach, R., & Stein, R. F. 1999, A&A, 346, L17 Google Scholar
Beeck, B., Cameron, R. H., Reiners, A., & Schüssler, M. 2013, A&A, 558, A48 Google Scholar
Bladh, S., Höfner, S., Aringer, B., & Eriksson, K. 2015, A&A, 575, A105 Google Scholar
Chiavassa, A., Freytag, B., Masseron, T., & Plez, B. 2011, A&A, 535, A22 Google Scholar
Chiavassa, A., Freytag, B., & Schultheis, M. 2018, A&A, 617, L1 Google Scholar
Chiavassa, A., Plez, B., Josselin, E., & Freytag, B. 2009, A&A, 506, 1351 Google Scholar
Clune, T. L., Elliott, J. R., Glatzmaier, G. L., Miesch, M. S., & Toomre, J. 1999, Parallel Comput., 25, 361 10.1016/S0167-8191(99)00009-5CrossRefGoogle Scholar
Collet, R., Nordlund, Å., Asplund, M., Hayek, W., & Trampedach, R. 2018, MNRAS, 475, 3369 10.1093/mnras/sty002CrossRefGoogle Scholar
Dravins, D., Lindegren, L., & Nordlund, Å. 1981, A&A, 96, 345 Google Scholar
Freytag, B. 2013, MemSAItS, 24, 26 Google Scholar
Freytag, B. 2017, MemSAIt, 88, 12 Google Scholar
Freytag, B., Allard, F., Ludwig, H.-G., Homeier, D., & Steffen, M. 2010, A&A, 513, A19 Google Scholar
Freytag, B. & Höfner, S. 2008, A&A, 483, 571 Google Scholar
Freytag, B., Liljegren, S., & Höfner, S. 2017, A&A, 600, A137 Google Scholar
Freytag, B., Steffen, M., & Dorch, B. 2002, AN, 323, 213 Google Scholar
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, J.Comput.Phys., 231, 919 10.1016/j.jcp.2011.09.026CrossRefGoogle Scholar
Gail, H.-P. & Sedlmayr, E. 2013, Physics and Chemistry of Circumstellar Dust Shells (Cambridge University Press)Google Scholar
Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154 Google Scholar
Hauschildt, P. H., Baron, E., & Allard, F. 1997, ApJ, 483, 390 10.1086/304233CrossRefGoogle Scholar
Höfner, S., Bladh, S., Aringer, B., & Ahuja, R. 2016, A&A, 594, A108 Google Scholar
Höfner, S. & Olofsson, H. 2018, A&AR, 26, 1 Google Scholar
Iglesias, C. A., Rogers, F. J., & Wilson, B. G. 1992, ApJ, 397, 717 10.1086/171827CrossRefGoogle Scholar
Liljegren, S., Höfner, S., Freytag, B., & Bladh, S. 2018, arXiv:1808.05043Google Scholar
Lim, J., Carilli, C. L., White, S. M., Beasley, A. J., & Marson, R. G. 1998, Nature, 392, 575 10.1038/33352CrossRefGoogle Scholar
Ludwig, H.-G., Caffau, E., Steffen, M., et al. 2009, MemSAIt, 80, 711 Google Scholar
Magic, Z., Collet, R., Asplund, M., et al. 2013, A&A, 557, A26 Google Scholar
Mundprecht, E., Muthsam, H. J., & Kupka, F. 2013, MNRAS, 435, 3191 10.1093/mnras/stt1511CrossRefGoogle Scholar
Nordlund, Å. 1982, A&A, 107, 1 Google Scholar
Nordlund, Å., Spruit, H. C., Ludwig, H.-G., & Trampedach, R. 1997, A&A, 328, 229 Google Scholar
Nordlund, Å. & Stein, R. F. 2001, ApJ, 546, 576 CrossRefGoogle Scholar
Nordlund, Å., Stein, R. F., & Asplund, M. 2009, Living Reviews in Solar Physics, 6, 2 10.12942/lrsp-2009-2CrossRefGoogle Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., & Springel, V. 2017, A&A, 599, A5 Google Scholar
Paladini, C., Baron, F., Jorissen, A., et al. 2018, Nature, 553, 310 10.1038/nature25001CrossRefGoogle Scholar
Roe, P. 1986, ARFM, 18, 337 Google Scholar
Schwarzschild, M. 1975, ApJ, 195, 137 10.1086/153313CrossRefGoogle Scholar
Stein, R. F. & Nordlund, Å. 2001, ApJ, 546, 585 10.1086/318218CrossRefGoogle Scholar
Stothers, R. & Leung, K.-C. 1971, A&A, 10, 290 Google Scholar
Trampedach, R., Asplund, M., Collet, R., Nordlund, Å., & Stein, R. F. 2013, ApJ, 769, 18 10.1088/0004-637X/769/1/18CrossRefGoogle Scholar
Tremblay, P.-E., Ludwig, H.-G., Freytag, B., et al. 2015, ApJ, 799, 142 10.1088/0004-637X/799/2/142CrossRefGoogle Scholar
Vasilyev, V., Ludwig, H.-G., Freytag, B., Lemasle, B., & Marconi, M. 2017, A&A, 606, A140 Google Scholar
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, A&A, 414, 1121 Google Scholar
Wedemeyer-Böhm, S., Kamp, I., Bruls, J., & Freytag, B. 2005, A&A, 438, 1043 Google Scholar