Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T05:24:00.793Z Has data issue: false hasContentIssue false

3D shape of Orion A with Gaia DR2 An informed view on Star Formation Rates and Efficiencies

Published online by Cambridge University Press:  13 January 2020

Josefa E. Großschedl
Affiliation:
Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien email: josefa.elisabeth.grossschedl@univie.ac.at
João Alves
Affiliation:
Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien email: josefa.elisabeth.grossschedl@univie.ac.at University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Data Science @ Uni Vienna
Stefan Meingast
Affiliation:
Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien email: josefa.elisabeth.grossschedl@univie.ac.at
Birgit Hasenberger
Affiliation:
Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien email: josefa.elisabeth.grossschedl@univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70 from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© International Astronomical Union 2020

References

Alves, J., & Bouy, H. 2012, A&A, 547, 97 Google Scholar
Bally, J. 2008, in: Reipurth, B. (eds.), Handbook of Star Forming Regions, Volume I, p. 459 Google Scholar
Bouy, H., Alves, J., Bertin, E., Sarro, L. M., & Barrado, D. 2014, A&A, 564, 29 Google Scholar
Dunham, M. M., Allen, L. E., Evans, N. J. II, Broekhoven-Fiene, H., Cieza, L. A., Di Francesco, J., Gutermuth, R. A., Harvey, P. M., Hatchell, J., Heiderman, A., et al. 2015, ApJ, 220, 11 Google Scholar
Franco, J. 1986, Rev. Mexicana AyA, 12, 287 Google Scholar
Fukui, Y., Torii, K., Hattori, Y., Nishimura, A., Ohama, A., Shimajiri, Y., Shima, K., Habe, A., Sano, H., Kohno, M., et al. 2018, ApJ, 859, 166 CrossRefGoogle Scholar
Collaboration, Gaia, Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., Vallenari, A., Babusiaux, C., Bailer-Jones, C. A. L., Bastian, U., Biermann, M., Evans, D. W., et al. 2016 A&A, 595, 1 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J., Babusiaux, C., Bailer-Jones, C. A. L., Biermann, M., Evans, D. W., Eyer, L., et al. 2018b A&A, 616, 1 Google Scholar
Großschedl, J. E., Alves, J., Meingast, S., Ackerl, C., Ascenso, J., Bouy, H., Burkert, A., Forbrich, J., Fürnkranz, V., Goodman, A., et al. 2018, A&A, 619, 106 Google Scholar
Großschedl, J. E., Alves, J., Teixeira, P. S., Bouy, H., Forbrich, J., Lada, C. J., Meingast, S., Hacar, A., Ascenso, J., Ackerl, C., et al. 2019, A&A, 622 Google Scholar
Hacar, A., Alves, J., Forbrich, J., Meingast, S., Kubiak, K., & Großschedl, J. E. 2016, A&A, 589, 80 Google Scholar
Hasenberger, B., Forbrich, J., Alves, J., Wolk, S. J., Meingast, S., Getman, K. V., & Pillitteri, I. 2016, A&A, 593, 7 Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. 2010, ApJ, 724, 687 CrossRefGoogle Scholar
Lombardi, M., Bouy, H., Alves, J., & Lada, C. J. 2014, A&A, 566, 45 Google Scholar
Meingast, S., Alves, J., & Lombardi, M. 2018, A&A, 614, 65 Google Scholar
Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515 Google Scholar
O’dell, C. R., Muench, A., Smith, N., & Zapata, L. 2008, in: Reipurth, B. (eds.), Handbook of Star Forming Regions, Volume I, p. 544 Google Scholar
Zucker, C., Battersby, C., & Goodman, A. 2018, ApJ, 864, 153 CrossRefGoogle Scholar