Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:26:00.815Z Has data issue: false hasContentIssue false

3He Abundances in Planetary Nebulae

Published online by Cambridge University Press:  08 August 2017

Lizette Guzman-Ramirez*
Affiliation:
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago, Chile Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Alpher, R. A., Bethe, H., & Gamow, G, 1948, Physical Review, 73, 803 Google Scholar
Balser, D. S., Bania, T. M., Rood, R. T., & Wilson, T. L., 1997, ApJ, 483, 320 Google Scholar
Balser, D. S., Rood, R. T., & Bania, T. M., 1999, ApJL, 522, L73 Google Scholar
Balser, D. S., Goss, W. M., Bania, T. M., & Rood, R. T., 2006, ApJ, 640, 360 Google Scholar
Bania, T. M., Balser, D. S., Rood, R. T., Wilson, T. L., & LaRocque, J. M., 2007, ApJ, 664, 915 Google Scholar
Bania, T. M., Rood, R. T., & Balser, D. S., 2010, IAU Symposium, 268, 81 Google Scholar
Boothroyd, A. I. & Sackmann, I.-J., 1999, ApJ, 510, 232 Google Scholar
Charbonnel, C. & Zahn, J.-P., 2007, A&A, 467, L15 Google Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C., 2006, Science, 314, 1580 Google Scholar
Galli, D., Palla, F., Ferrini, F., & Penco, U., 1995, ApJ, 443, 536 Google Scholar
Galli, D., Stanghellini, L., Tosi, M., & Palla, F., 1997, ApJ, 477, 218 Google Scholar
Geiss, J. 1993, Origin and Evolution of the Elements, 89Google Scholar
Gloeckler, G. & Geiss, J., 1996, Nature, 381, 210 Google Scholar
Guzman-Ramirez, L., Pineda, J. E., Zijlstra, A. A., Stancliffe, R., & Karakas, A., 2013, MNRAS, 432, 793 Google Scholar
Guzman-Ramirez, L., Rizzo, J. R., Zijlstra, A. A., et al., 2016, MNRAS, 460, L35 Google Scholar
Hjellming, R. M., Andrews, M. H., & Sejnowski, T. J., 1969, Astrophys. Lett, 3, 111 Google Scholar
Karakas, A. I. & Lattanzio, J. C., 2014, Publications of the Astronomical Society of Australia, 31, 30 Google Scholar
Morisset, C., 2006, IAU Symposium, 234, 467 Google Scholar
Planck Collaboration et al., 2014, A&A, 571, A1 Google Scholar
Rood, R. T., Wilson, T. L., & Steigman, G., 1979, ApJL, 227, L91 Google Scholar
Weiss, A., Wagenhuber, J., & Denissenkov, P. A., 1996, A&A, 313, 581 Google Scholar
Wilson, T. L. & Rood, R., 1994, Annual Review of Astron and Astrophys, 32, 191 Google Scholar