Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T09:17:30.319Z Has data issue: false hasContentIssue false

The Pristine Inner Galaxy Survey (PIGS) V: a chemo-dynamical investigation of the early assembly of the Milky Way with the most metal-poor stars in the bulge

Published online by Cambridge University Press:  13 February 2024

Federico Sestito*
Affiliation:
Department of Physics and Astronomy, University of Victoria, PO Box 3055, STN CSC, Victoria BC V8W 3P6, Canada.
Kim A. Venn
Affiliation:
Department of Physics and Astronomy, University of Victoria, PO Box 3055, STN CSC, Victoria BC V8W 3P6, Canada.
Anke Arentsen
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
David Aguado
Affiliation:
Instituto de Astrofísica de Canarias (IAC), Vía Láctea, E-38200 La Laguna, Tenerife, Spain Universidad de La Laguna, Dept. Astrofísica, E-38200 La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The investigation of the metal-poor tail in the Galactic bulge provides unique information on the early Milky Way assembly and evolution. A chemo-dynamical analysis of 17 very metal-poor stars (VMP, [Fe/H < – 2.0]) selected from the Pristine Inner Galaxy Survey was carried out based on Gemini/GRACES spectra. The chemistry suggests that the majority of our stars are very similar to metal-poor stars in the Galactic halo. Orbits calculated from Gaia EDR3 imply these stars are brought into the bulge during the earliest Galactic assembly. Most of our stars have large [Na,Ca/Mg] abundances, and thus show little evidence of enrichment by pair-instability supernovae. Two of our stars (P171457, P184700) have chemical abundances compatible with second-generation globular cluster stars, suggestive of the presence of ancient and now dissolved globular clusters in the inner Galaxy. One of them (P171457) is extremely metal-poor ([Fe/H < – 3.0]) and well below the metallicity floor of globular clusters, which supports the growing evidence for the existence of lower-metallicity globular clusters in the early Universe. A third star (P180956, [Fe/H]∼ – 2) has low [Na,Ca/Mg] and very low [Ba/Fe] for its metallicity, which are consistent with formation in a system polluted by only one or a few low-mass supernovae. Interestingly, its orbit is confined to the Galactic plane, like other very metal-poor stars found in the literature, which have been associated with the earliest building blocks of the Milky Way.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., Eke, V. R. 2003, ApJ, 597, 21 CrossRefGoogle Scholar
Aguado, D. S., Youakim, K., González Hernández, J. I. et al. 2019, MNRAS, 490, 2241 Google Scholar
Aoki, W., Beers, T. C., Lee, Y. S. et al. 2013, AJ, 145, 13 Google Scholar
Arentsen, A., Starkenburg, E., Martin, N.F. et al. 2020a, MNRAS, 491, L11 Google Scholar
Arentsen, A., Starkenburg, E., Martin, N.F. et al. 2020b, MNRAS, 496, 4964 Google Scholar
Bastian, N., Lardo, C. 2018, ARA&A, 56, 83 Google Scholar
Bensby, T., Yee, J.C., Feltzing, S., et al. 2013, A&A, 549, 147 CrossRefGoogle Scholar
Bensby, T., Feltzing, S., Gould, A., et al. 2017, A&A, 605, 89 Google Scholar
Bessell, M., Bloxham, G., Schmidt, B. et al. 2011, PASP, 123, 789 Google Scholar
Bullock, J. S. & Johnston, K. V. 2005, ApJ, 635, 931 Google Scholar
Cordoni, G., Da Costa, G. S., Yong, D. et al. 2021, MNRAS, 503, 2539 CrossRefGoogle Scholar
El-Badry, K., Bland-Hawthorn, J., Wetzel, A. et al. 2018, MNRAS, 480, 652 Google Scholar
François, P., Monaco, L., Bonifacio, P. et al. 2016, A&A, 588, A7 CrossRefGoogle Scholar
Frebel, A., Simon, Joshua D., Kirby, E. N. 2014, ApJ, 786, 74 CrossRefGoogle Scholar
Freeman, K. and Bland-Hawthorn, J. 2002, ARA&A, 40, 487 Google Scholar
Gratton, R., Sneden, C., Carretta, E. 2004, ARA&A, 42, 385 Google Scholar
Howes, L.M., Asplund, M., Casey, A. R., et al. 2014, MNRAS, 445, 4241 Google Scholar
Howes, L.M., Casey, A. R., Asplund, M. et al. 2015, Nature, 527, 7579 CrossRefGoogle Scholar
Howes, L.M., Asplund, M., Keller, S.C., et al. 2016, MNRAS, 460, 884 Google Scholar
Johnston, K. V., Bullock, J. S., Sharma, S. et al. 2008, ApJ, 689, 936 CrossRefGoogle Scholar
Karlsson, T., Bromm, V., Bland-Hawthorn, J. 2013, RvModPhys, 85, 809 CrossRefGoogle Scholar
Kielty, C. L., Venn, K. A., Sestito, F. et al. 2021, MNRAS, 506, 1438 CrossRefGoogle Scholar
Koch, A., McWilliam, A., Grebel, E. K. 2008, ApJL, 688, L13 CrossRefGoogle Scholar
Koch, A., Feltzing, S., Adén, D., Matteucci, F. 2013, A&A, 554, A5 CrossRefGoogle Scholar
Koch, A., McWilliam, A., Preston, G.W., Thompson, I.B. 2016, A&A, 587, 124 Google Scholar
Kruijssen, J. M. D. 2015, MNRAS, 454, 1658 CrossRefGoogle Scholar
Lardo, C., Mashonkina, L., Jablonka, P. et al. 2021, MNRAS, 508, 3068 CrossRefGoogle Scholar
Lucey, M., Hawkins, K., Ness, M. et al. 2019, MNRAS, 488, 2283 CrossRefGoogle Scholar
Lucey, M., Hawkins, K., Ness, M. et al. 2021, MNRAS, 501, 5981 CrossRefGoogle Scholar
Lucey, M., Hawkins, K., Ness, M. et al. 2022, MNRAS, 509, 122 CrossRefGoogle Scholar
Ness, M., Freeman, K., Athanassoula, E. et al. 2013a, MNRAS, 430, 836 CrossRefGoogle Scholar
Ness, M., Freeman, K., Athanassoula, E. et al. 2013b, MNRAS, 432, 2092 Google Scholar
Ness, M., Asplund, M., Casey, A.R. 2014, MNRAS, 445, 2994 CrossRefGoogle Scholar
Pancino, E., Romano, D., Tang, B. et al. 2017, A&A, 601, A112 Google Scholar
Reggiani, H., Schlaufman, K. C., Casey, A. R., Ji, A. P. 2020, AJ, 160, 173 Google Scholar
Salvadori, S., Bonifacio, P., Caffau, E. et al. 2019, MNRAS, 487, 4261 Google Scholar
Santistevan, I. B., Wetzel, A., Sanderson, R. E. et al. 2021, MNRAS, 505, 921 CrossRefGoogle Scholar
Schiavon, R.P., Zamora, O., Carrera, R, et al. 2017, MNRAS, 465, 501 Google Scholar
Schlaufman, K. C. & Casey, A. R. 2014, ApJ, 797, 13 Google Scholar
Schultheis, M., Rich, R. M., Origlia, L. et al. 2019, A&A, 627, A152 CrossRefGoogle Scholar
Shapiro, K. L., Genzel, R., Förster Schreiber, N. M. 2010, MNRAS, 403, L36 CrossRefGoogle Scholar
Sestito, F., Longeard, N., Martin, N. F. et al. 2019, MNRAS, 484, 2166 CrossRefGoogle Scholar
Sestito, F., Martin, N. F., Starkenburg, E. et al. 2020, MNRAS, 497, L7 Google Scholar
Sestito, F., Buck, T., Starkenburg, E. et al. 2021, MNRAS, 500, 3750 CrossRefGoogle Scholar
Starkenburg, E., Oman, K. A., Navarro, J. F. et al. 2017a, MNRAS, 465, 2212 CrossRefGoogle Scholar
Starkenburg, E., Martin, N., Youakim, K. et al. 2017b, MNRAS, 471, 2587 Google Scholar
Starkenburg, E., Youakim, K., Martin, N. et al. 2019, MNRAS, 490, 5757 CrossRefGoogle Scholar
Takahashi, K., Yoshida, T., Umeda, H. 2018, ApJ, 857, 111 CrossRefGoogle Scholar
Tissera, P. B., White, S. D. M., Scannapieco, C. 2012, MNRAS, 420, 255 CrossRefGoogle Scholar
Tumlinson, J. 2010, ApJ, 708, 1398 CrossRefGoogle Scholar
Venn, K., Fabbro, S., Liu, A. et al. 2020, Canadian Long Range Plan for Astronony and Astrophysics White Papers, 5Google Scholar
Wise, J. H., Turk, M. J., Norman, M. L., et al. 2012, ApJ, 745, 50 CrossRefGoogle Scholar
Wolf, C., Onken, C. A., Luvaul, L. C. et al. 2018, PASA, 35, e010 CrossRefGoogle Scholar
Yong, D., Norris, J. E., Bessell, M. S. et al. 2013, ApJ, 762, 26 CrossRefGoogle Scholar
Youakim, K., Starkenburg, E., Aguado, D. S. et al. 2017, MNRAS, 472, 2963 CrossRefGoogle Scholar