Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T18:41:01.575Z Has data issue: false hasContentIssue false

Accretion and Outflow in Active Galaxies

Published online by Cambridge University Press:  03 June 2010

Andrew King*
Affiliation:
Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH, UK Email: ark@astro.le.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.

Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214CrossRefGoogle Scholar
Barth, A. J., Martini, P., Nelson, C. H., & Ho, L. C. 2003, ApJ, 594, L95CrossRefGoogle Scholar
Begelman, M. C., King, A. R., & Pringle, J. E. 2006, MNRAS, 370, 399CrossRefGoogle Scholar
Cappi, M. 2006, AN, 327, 1012Google Scholar
Denney, K. D., et al. 2009, ApJ, 702, 1353CrossRefGoogle Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604CrossRefGoogle Scholar
Fanidakis, N., Baugh, C. M., Benson, A. J., Bower, R. G., Cole, S., Done, C., & Frenk, C. S. 2009 [arXiv:0911.1128]Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Fromang, S. & Papaloizou, J. 2007, A&A, 476, 1113Google Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L89CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2008, MNRAS, 387, 639CrossRefGoogle Scholar
Hopkins, P. F. & Quataert, E. 2009 [arXiv:0912.3257]Google Scholar
King, A. 2003, ApJ, 596, L27CrossRefGoogle Scholar
King, A. 2005, ApJ, 635, L121CrossRefGoogle Scholar
King, A. R. 2009, MNRAS, in press [arXiv:0911.1639v1])Google Scholar
King, A. R., Lubow, S. H., Ogilvie, G. I., & Pringle, J. E. 2005, MNRAS, 363, 49CrossRefGoogle Scholar
King, A. R. & Pounds, K. A. 2003, MNRAS, 345, 657CrossRefGoogle Scholar
King, A. R. & Pringle, J. E. 2006, MNRAS, 373, L90CrossRefGoogle Scholar
King, A. R. & Pringle, J. E. 2007, MNRAS, 377, L25CrossRefGoogle Scholar
King, A. R., Pringle, J. E., & Hofmann, J. A. 2008, MNRAS, 385.CrossRefGoogle Scholar
King, A. R., Taam, R. E., & Begelman, M.C. 2000, ApJ, 530, L25CrossRefGoogle Scholar
Kinney, A. L., Schmitt, H. R., Clarke, C. J., Pringle, J. E., Ulvestad, J. S., & Antonucci, R. R. J. 2000, ApJ, 537, 152CrossRefGoogle Scholar
Pounds, K. A., Reeves, J. N., King, A. R., & Page, K. L. 2004, MNRAS, 350, 10CrossRefGoogle Scholar
Scheuer, P. A. G. & Feiler, R. 1996, MNRAS, 282, 291CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJ, 663, L77CrossRefGoogle Scholar
Volonteri, M., Madau, P., Quataert, E., & Rees, M. J. 2005, ApJ, 620, 69CrossRefGoogle Scholar
Willott, C. J., McLure, R. J., & Jarvis, M. J. 2003, ApJ, 587, L15CrossRefGoogle Scholar