Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T19:27:16.006Z Has data issue: false hasContentIssue false

AGN and Host Galaxies in the COSMOS Survey

Published online by Cambridge University Press:  05 December 2011

Christopher D. Impey
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
Jonathan R. Trump
Affiliation:
University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064
Jared M. Gabor
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cosmological Evolution Survey (COSMOS) is a unique tool for studying low level AGN activity and the co-evolution of galaxies and supermassive black holes. COSMOS involves the largest contiguous region of the sky ever imaged by HST; it includes very complete multiwavelength coverage, and the largest joint samples of galaxy and AGN redshifts in any deep survey. The result is a search for AGN with low black hole mass, low accretion rates, and levels of obscuration that can remove them from optical surveys. A complete census of intermediate mass black holes at redshifts of 1 to 3 is required to tell the story of the co-evolution of galaxies and their embedded, and episodically active, black holes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Barnes, J. E. 1980, Nature, 344, 379CrossRefGoogle Scholar
Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M. & Onken, C. A. 2006, ApJ, 644, 133CrossRefGoogle Scholar
Capak, P. et al. 2010, in prep.Google Scholar
Cisternas, M., et al. 2011, ApJ, 726, 57CrossRefGoogle Scholar
Conselice, C. J., Bershady, M. A., & Jangren, A. 2000, ApJ, 529, 886CrossRefGoogle Scholar
Davies, R. I., et al. 2006, ApJ, 646, 754CrossRefGoogle Scholar
DiAAAAMatteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604CrossRefGoogle Scholar
Gabor, J. M., et al. 2009, ApJ, 691, 705CrossRefGoogle Scholar
Gavignaud, I., et al. 2008, A&A, 492, 637Google Scholar
Greene, J. E. & Ho, L. C. 2006, ApJ, 641, 21CrossRefGoogle Scholar
Hernquist, L. 1989, Nature, 340, 687CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., & DiAAAAMatteo, T. 2005, ApJ, 630, 705CrossRefGoogle Scholar
Koekemoer, A. M., et al. 2007, ApJS, 172, 196CrossRefGoogle Scholar
Kollmeier, J. A., et al. 2006, ApJ, 648, 128CrossRefGoogle Scholar
Magorrian, J., et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., Hunt, L. K., Maiolino, R., & Salvati, M. 2004, MNRAS, 351, 169CrossRefGoogle Scholar
Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Wandel, A. 2004, ApJ, 615, 645CrossRefGoogle Scholar
Onken, C. A., et al. 2007, ApJ, 670, 105CrossRefGoogle Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266CrossRefGoogle Scholar
Schmidt, M. 1963, Nature, 197, 1040CrossRefGoogle Scholar
Scoville, N., et al. 2007, ApJS, 172, 38CrossRefGoogle Scholar
Seyfert, C. K. 1943, ApJ, 97, 28CrossRefGoogle Scholar
Shen, Y., Greene, J. E., Strauss, M. A., Richards, G. T., & Schneider, D. P. 2008, ApJ, 680, 169CrossRefGoogle Scholar
Soltan, A. 1982, MNRAS, 200, 115CrossRefGoogle Scholar
Trump, J. R., et al. 2007, ApJS, 172, 383CrossRefGoogle Scholar
Trump, J. R., et al. 2009a, ApJ, 696, 1195CrossRefGoogle Scholar
Trump, J. R., et al. 2009b, ApJ, 700, 49CrossRefGoogle Scholar
Trump, J. R., et al. 2009c, ApJ, 706, 797CrossRefGoogle Scholar
Trump, J. R., et al. 2011, ApJ submittedGoogle Scholar
Vestergaard, M. & Peterson, B. M. 2006, ApJ, 641, 689CrossRefGoogle Scholar