Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T10:46:06.288Z Has data issue: false hasContentIssue false

An “A star” on an M star during a flare within a flare

Published online by Cambridge University Press:  26 August 2011

Adam F. Kowalski
Affiliation:
Astronomy Department, University of Washington Box 351580, Seattle, WA 98195, USA email: kowalski@astro.washington.edu
Suzanne L. Hawley
Affiliation:
Astronomy Department, University of Washington Box 351580, Seattle, WA 98195, USA email: kowalski@astro.washington.edu
Jon A. Holtzman
Affiliation:
Department of Astronomy, New Mexico State University Box 30001, Las Cruces, NM 88003, USA
John P. Wisniewski
Affiliation:
Astronomy Department, University of Washington Box 351580, Seattle, WA 98195, USA email: kowalski@astro.washington.edu NSF Astronomy & Astrophysics Postdoctoral Fellow
Eric J. Hilton
Affiliation:
Astronomy Department, University of Washington Box 351580, Seattle, WA 98195, USA email: kowalski@astro.washington.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

M dwarfs produce explosive flare emission in the near-UV and optical continuum, and the mechanism responsible for this phenomenon is not well-understood. We present a near-UV/optical flare spectrum from the rise phase of a secondary flare, which occurred during the decay of a much larger flare. The newly formed flare emission resembles the spectrum of an early-type star, with the Balmer lines and continuum in absorption. We model this observation phenomenologically as a temperature bump (hot spot) near the photosphere of the M dwarf. The amount of heating implied by our model (ΔTphot ~ 16,000 K) is far more than predicted by chromospheric backwarming in current 1D RHD flare models (ΔTphot ~ 1200 K).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Allred, J. C., Hawley, S. L., Abbett, W. P., & Carlsson, M. 2006, Astrophys. J., 644, 484CrossRefGoogle Scholar
Bohlin, R. C. 2007, ASP-CS, 364, 315Google Scholar
Eason, E. L. E., Giampapa, M. S., Radick, R. R., Worden, S. P., & Hege, E. K. 1992, AJ, 104, 1161CrossRefGoogle Scholar
Fang, C., Tang, Y. H., Xu, Z., Ding, M. D., & Chen, P. F. 2006, Astrophys. J., 643, 1325CrossRefGoogle Scholar
Fuhrmeister, B., Liefke, C., Schmitt, J. H. H.. M., & Reiners, A. 2008, Astron. Astrophys, 487, 293CrossRefGoogle Scholar
Garcia-Alvarez, D., Jevremovic, D., Doyle, J. G., & Butler, C. J. 2002, Astron. Astrophys, 383, 548CrossRefGoogle Scholar
Hawley, S. L. & Pettersen, B. R. 1991, Astrophys. J., 378, 725CrossRefGoogle Scholar
Hawley, S. L. & Fisher, G. H. 1992, Astrophys. J. Suppl., 78, 565CrossRefGoogle Scholar
Hawley, S. L., Allred, J. C., Johns-Krull, C. M., Fisher, G. H., Abbett, W. P., Alekseev, I., Avgoloupis, S. I., Deustua, S. E., Gunn, A., & Seiradakis, J. H. 2003, apj, 597, 535CrossRefGoogle Scholar
Kowalski, A. F., Hawley, S. L., Holtzman, J. A., Wisniewski, J. P., & Hilton, E. J. 2010, Astrophys. J., 714L, 98CrossRefGoogle Scholar
Uitenbroek, H. 2001, Astrophys. J., 557, 389CrossRefGoogle Scholar