Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T02:56:20.644Z Has data issue: false hasContentIssue false

Analysis of the X-ray spectrum of the hot bubble of BD+30°3639

Published online by Cambridge University Press:  08 August 2017

Detlef Schönberner
Affiliation:
Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: deschoenberner@aip.de
Ralf Jacob
Affiliation:
Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: deschoenberner@aip.de
René Heller
Affiliation:
Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: deschoenberner@aip.de
Matthias Steffen
Affiliation:
Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: deschoenberner@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We developed a model for wind-blown bubbles with temperature and density profiles based on self-similar solutions including thermal conduction. We constructed also heat-conduction bubbles with chemical discontinuities. The X-ray emission is computed using the well-documented CHIANTI code (v6.0.1). These bubble models are used to (re)analyse the high-resolution X-ray spectrum of the hot bubble of BD+30°3639, and they appeared to be much superior to constant temperature approaches.

We found for the X-ray emission of BD+30°3639 that temperature-sensitive and abundance-sensitive line ratios computed on the basis of heat-conducting wind-blown bubbles and with abundances as found in the stellar photosphere/wind can only be reconciled with the observations if the hot bubble of BD+30°3639 is chemically stratified, i.e. if it contains also a small mass fraction (≃ 3 %) of hydrogen-rich matter immediately behind the conduction front. Neon appears to be strongly enriched, with a mass fraction of at least about 0.06.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Crowther, P. A.,Morris, P. W., &Smith, J. D.,2006, ApJ, 636, 1033 CrossRefGoogle Scholar
Dere, K. P.,Landi, E.,Young, P. R.,,et al.2009, A&A, 498, 915 Google Scholar
Kastner, J. H.,Montez, R.,Jr., Balick, B.,,et al.2012, AJ, 144, 48 Google Scholar
Marcolino, W. L. F.,Hillier, D. J.,de Araujo, F. X., &Pereira, C. B.,2007, ApJ, 654, 1068 Google Scholar
Nordon, R.,Behar, E.,Soker, N.,Kastner, J. H., &Yu, Y. S.,2009, ApJ, 695, 834 Google Scholar
Sandin, C.,Steffen, M.,Schönberner, D., &Rühling, U.,2016, A&A, 586, A57 Google Scholar
Soker, N.,1994, AJ, 107, 276 CrossRefGoogle Scholar
Steffen, M.,Schönberner, D., &Warmuth, A.,2008, A&A, 489, 173 Google Scholar
Toalá, J. A.&Arthur, S. J.,2016, MNRAS, 463, 4438 Google Scholar
Yu, Y. S.,Nordon, R.,Kastner, J. H.,,et al.2009, ApJ, 690, 440 CrossRefGoogle Scholar
Zhekov, S. A.&Perinotto, M.,1996, A&A, 309, 648 Google Scholar
Zhekov, S. A.&Perinotto, M.,1998, A&A, 334, 239 Google Scholar