Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:38:08.474Z Has data issue: false hasContentIssue false

Are globular clusters the natural outcome of regular high-redshift star formation?

Published online by Cambridge University Press:  07 March 2016

J. M. Diederik Kruijssen*
Affiliation:
Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748, Garching, Germany email: kruijssen@mpa-garching.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarise the recent progress in understanding the formation and evolution of globular clusters (GCs) in the context of galaxy formation and evolution. It is discussed that an end-to-end model for GC formation and evolution should capture four different phases: (1) star and cluster formation in the high-pressure interstellar medium of high-redshift galaxies, (2) cluster disruption by tidal shocks in the gas-rich host galaxy disc, (3) cluster migration into the galaxy halo, and (4) the final evaporation-dominated evolution of GCs until the present day. Previous models have mainly focussed on phase 4. We present and discuss a simple model that includes each of these four steps – its key difference with respect to previous work is the simultaneous addition of the high-redshift formation and early evolution of young GCs, as well as their migration into galaxy haloes. The new model provides an excellent match to the observed GC mass spectrum and specific frequency, as well as the relations of GCs to the host dark matter halo mass and supermassive black hole mass. These results show (1) that the properties of present-day GCs are reproduced by assuming that they are the natural outcome of regular high-redshift star formation (i.e. they form according to same physical processes that govern massive cluster formation in the local Universe), and (2) that models only including GC evaporation strongly underestimate their integrated mass loss over a Hubble time.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Adamo, A. & Bastian, N., 2015, The lifecycle of clusters in galaxies. The Birth of Star Clusters, editor Stahler, S.W., Springer, submittedGoogle Scholar
Adamo, A., Östlin, G., & Zackrisson, E., 2011, MNRAS, 417, 1904Google Scholar
Bastian, N., 2008, MNRAS, 390, 759Google Scholar
Bastian, N.et al., 2012, MNRAS, 419, 2606Google Scholar
Bastian, N., Trancho, G., Konstantopoulos, I. S., & Miller, B. W., 2009, ApJ, 701, 607Google Scholar
Baumgardt, H. & Makino, J., 2003, MNRAS, 340, 227Google Scholar
Efremov, Y. N. & Elmegreen, B. G., 1998, MNRAS, 299, 588CrossRefGoogle Scholar
Elmegreen, B. G., 2010, ApJ, 712, L184Google Scholar
Elmegreen, B. G. & Efremov, Y. N., 1997, ApJ, 480, 235CrossRefGoogle Scholar
Elmegreen, B. G. & Falgarone, E., 1996, ApJ, 471, 816Google Scholar
Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., & Adelberger, K. L., 2006, ApJ, 646, 107Google Scholar
Fall, S. M. & Zhang, Q., 2001, ApJ, 561, 751Google Scholar
Forbes, D. A. & Bridges, T., 2010, MNRAS, 404, 1203Google Scholar
Förster Schreiber, N. M.et al., 2009, ApJ, 706, 1364CrossRefGoogle Scholar
Genzel, R.et al., 2010, MNRAS, 407, 2091CrossRefGoogle Scholar
Gieles, M. & Baumgardt, H., 2008, MNRAS, 389, L28Google Scholar
Gieles, M., Heggie, D. C., & Zhao, H., 2011, MNRAS, 413, 2509CrossRefGoogle Scholar
Gieles, M., Portegies Zwart, S. F., Baumgardt, H., Athanassoula, E., Lamers, H. J. G. L. M., Sipior, M., & Leenaarts, J., 2006, MNRAS, 371, 793CrossRefGoogle Scholar
Goddard, Q. E., Bastian, N., & Kennicutt, R. C., 2010, MNRAS, 405, 857Google Scholar
Goodwin, S. P. & Bastian, N., 2006, MNRAS, 373, 752CrossRefGoogle Scholar
Harris, W. E., 1996, AJ, 112, 1487CrossRefGoogle Scholar
Harris, W. E. & Harris, G. L. H., 2002, AJ, 123, 3108CrossRefGoogle Scholar
Hills, J. G., 1980, ApJ, 235, 986Google Scholar
Hodge, J. A., Carilli, C. L., Walter, F., de Blok, W. J. G., Riechers, D., Daddi, E., & Lentati, L., 2012, ApJ, 760, 11CrossRefGoogle Scholar
Hughes, A.et al., 2013, ApJ, 779, 44Google Scholar
Kravtsov, A. V. & Gnedin, O. Y., 2005, ApJ, 623, 650CrossRefGoogle Scholar
Kruijssen, J. M. D., 2009, A&A, 507, 1409Google Scholar
Kruijssen, J. M. D., 2011, PhD thesis, Utrecht University, The NetherlandsGoogle Scholar
Kruijssen, J. M. D., 2012, MNRAS, 426, 3008Google Scholar
Kruijssen, J. M. D., 2014, Classical and Quantum Gravity, 31, 244006CrossRefGoogle Scholar
Kruijssen, J. M. D., 2015, MNRAS submittedGoogle Scholar
Kruijssen, J. M. D. & Longmore, S. N., 2013, MNRAS, 435, 2598Google Scholar
Kruijssen, J. M. D., Maschberger, T., Moeckel, N., Clarke, C. J., Bastian, N. & Bonnell, I. A., 2012a, MNRAS, 419, 841Google Scholar
Kruijssen, J. M. D., Pelupessy, F. I., Lamers, H. J. G. L. M., Portegies Zwart, S. F., Bastian, N., Icke, V., 2012b, MNRAS, 421, 1927CrossRefGoogle Scholar
Kruijssen, J. M. D., Pelupessy, F. I., Lamers, H. J. G. L. M., Portegies Zwart, S. F., Icke, V., 2011, MNRAS, 414, 1339Google Scholar
Kruijssen, J. M. D., Portegies Zwart, S. F., 2009, ApJ, 698, L158CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., 2005, ApJ, 630, 250Google Scholar
Lada, C. J., Lada, E. A., 2003, ARA&A, 41, 57Google Scholar
Lada, C. J., Margulis, M., Dearborn, D., 1984, ApJ, 285, 141CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Kruijssen, J. M. D., Bastian, N., Rejkuba, M., Hilker, M., Kissler-Patig, M., 2015, in preparationGoogle Scholar
Larsen, S. S., 2009, A&A, 494, 539Google Scholar
Li, H., Gnedin, O. Y., 2014, ApJ, 796, 10CrossRefGoogle Scholar
Longmore, S. N.et al., 2014, Protostars and Planets VI, 291Google Scholar
Madau, P., Dickinson, M., 2014, ARA&A, 52, 415Google Scholar
Mannucci, F.et al., 2009, MNRAS, 398, 1915Google Scholar
McLaughlin, D. E., Fall, S. M., 2008, ApJ, 679, 1272Google Scholar
Pontzen, A., Governato, F., 2012, MNRAS, 421, 3464Google Scholar
Portegies Zwart, S. F., McMillan, S. L. W., Gieles, M., 2010, ARA&A, 48, 431Google Scholar
Prieto, J. L., Gnedin, O. Y., 2008, ApJ, 689, 919Google Scholar
Rathborne, J. M.et al., 2015, ApJ in press, arXiv:1501.07368Google Scholar
Rodighiero, G.et al., 2011, ApJ, 739, L40Google Scholar
Shapiro, K. L., Genzel, R., Förster Schreiber, N. M., 2010, MNRAS, 403, L36Google Scholar
Silva-Villa, E., Adamo, A., Bastian, N., 2013, MNRAS, 436, L69CrossRefGoogle Scholar
Spitzer, L., 1987, Dynamical evolution of globular clusters. Princeton, NJ, Princeton University Press, 1987, 191 p.Google Scholar
Springel, V.et al., 2005, Nature, 435, 629Google Scholar
Swinbank, A. M.et al., 2011, ApJ, 742, 11Google Scholar
Tacconi, L. J.et al., 2013, ApJ, 768, 74Google Scholar
Toomre, A., 1964, ApJ, 139, 1217Google Scholar
Vesperini, E., Heggie, D. C., 1997, MNRAS, 289, 898Google Scholar
White, S. D. M., Frenk, C. S., 1991, ApJ, 379, 52CrossRefGoogle Scholar
Zhang, Q., Fall, S. M., 1999, ApJ, 527, L81CrossRefGoogle Scholar