Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T12:14:44.276Z Has data issue: false hasContentIssue false

Bayesian discrimination of the panchromatic spectral energy distribution modelings of galaxies

Published online by Cambridge University Press:  10 June 2020

Yunkun Han
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China email: hanyk@ynao.ac.cn Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China
Zhanwen Han
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China email: hanyk@ynao.ac.cn Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, P. R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China
Lulu Fan
Affiliation:
Institute of Space Science, Shandong University, Weihai, 264209, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fitting the multi-wavelength spectral energy distributions (SEDs) of galaxies is a widely used technique to extract information about the physical properties of galaxies. However, a major difficulty lies in the numerous uncertainties regarding almost all ingredients of the SED modeling of galaxies. The Bayesian methods provide a consistent conceptual basis for dealing with the problem of inference with many uncertainties. While the Bayesian parameter estimation method have become quite popular in the field of SED fitting of galaxies, the Bayesian model comparison method, which is based on the same Bayes’ rule, is still not widely used in this field. With the application of Bayesian model comparison method in a series of papers, we show that the results obtained with Bayesian model comparison are understandable in the context of stellar/galaxy physics. These results indicate that Bayesian model comparison is a reliable and very powerful method for the SED fitting of galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339CrossRefGoogle Scholar
Boffin, H., Carraro, G., & Beccari, G. 2014, Ecology of Blue Straggler Stars (Springer Berlin Heidelberg)Google Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Crocker, A. F., et al. 2012, Nature, 484, 485CrossRefGoogle Scholar
Cassisi, S. & Salaris, M. 2013, Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation (Wiley)10.1002/9783527665518CrossRefGoogle Scholar
Conroy, C. & Gunn, J. E. 2010, ApJ, 712, 83310.1088/0004-637X/712/2/833CrossRefGoogle Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 48610.1088/0004-637X/699/1/486CrossRefGoogle Scholar
Conroy, C., White, M., & Gunn, J. E. 2010, ApJ, 708, 58CrossRefGoogle Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 110910.1111/j.1365-2966.2007.12738.xCrossRefGoogle Scholar
Fan, L., Han, Y., Nikutta, R., Drouart, G., & Knudsen, K. K. 2016, ApJ, 823, 107CrossRefGoogle Scholar
Fan, L., Han, Y., Fang, G., Gao, Y., Zhang, D., Jiang, X., Wu, Q., Yang, J., et al. 2016, ApJ, 822, L32CrossRefGoogle Scholar
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601CrossRefGoogle Scholar
Gregory, P. 2005, Bayesian Logical Data Analysis for the Physical Sciences (New York, NY, USA: Cambridge University Press)CrossRefGoogle Scholar
Han, Y. & Han, Z. 2012, ApJ, 749, 12310.1088/0004-637X/749/2/123CrossRefGoogle Scholar
Han, Y. & Han, Z. 2014, ApJS, 215, 210.1088/0067-0049/215/1/2CrossRefGoogle Scholar
Han, Y. & Han, Z. 2019, ApJS, 240, 310.3847/1538-4365/aaeffaCrossRefGoogle Scholar
Heber, U. 2009, ARA&A, 47, 211CrossRefGoogle Scholar
Kriek, M., van Dokkum, P. G., Labbé, I., Franx, M., Illingworth, G. D., Marchesini, D., & Quadri, R. F. 2009, ApJ, 700, 221CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Leitherer, C., Ortiz Otálvaro, P. A., Bresolin, F., Kudritzki, R.-P., Lo Faro, B., Pauldrach, A. W. A., Pettini, M., & Rix, S. A. 2010, ApJS, 189, 30910.1088/0067-0049/189/2/309CrossRefGoogle Scholar
Marigo, P. & Girardi, L. 2007, A&A, 469, 239Google Scholar
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., & Granato, G. L. 2008, A&A, 482, 883Google Scholar
Moe, M. & Di Stefano, R. 2017, ApJS, 230, 1510.3847/1538-4365/aa6fb6CrossRefGoogle Scholar
Muzzin, A., Marchesini, D., Stefanon, M., Franx, M., Milvang-Jensen, B., Dunlop, J. S., Fynbo, J. P. U., Brammer, G., et al. 2013, ApJS, 206, 8CrossRefGoogle Scholar
Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., et al. 2013, ApJS, 208, 4CrossRefGoogle Scholar
Rosenfield, P., Marigo, P., Girardi, L., Dalcanton, J. J., Bressan, A., Williams, B. F., & Dolphin, A. 2016, ApJ, 822, 73CrossRefGoogle Scholar
Ruiz, A., Miniutti, G., Panessa, F., & Carrera, F. J. 2010, A&A, 515, A99+CrossRefGoogle Scholar
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., Cenarro, A. J., Beasley, M. A., Cardiel, N., Gorgas, J., & Peletier, R. F. 2010, MNRAS, 404, 1639Google Scholar
Zhang, F., Han, Z., Li, L., & Hurley, J. R. 2005, MNRAS, 357, 1088CrossRefGoogle Scholar