Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T20:53:22.909Z Has data issue: false hasContentIssue false

Bimodal regime in young massive clusters leading to subsequent stellar generations

Published online by Cambridge University Press:  31 March 2017

Richard Wünsch
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, v.v.i. Boční II 1401, 141 31 Prague, Czech Republic email: richard@wunsch.cz
Jan Palouš
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, v.v.i. Boční II 1401, 141 31 Prague, Czech Republic email: richard@wunsch.cz
Guillermo Tenorio-Tagle
Affiliation:
Instituto Nacional de Astrofísica Optica y Electrónica AP 51, 72000 Puebla, México
Casiana Muñoz-Tuñón
Affiliation:
Instituto de Astrofísica de Canarias 38200 La Laguna, Tenerife, Spain
Soňa Ehlerová
Affiliation:
Astronomical Institute of the Czech Academy of Sciences, v.v.i. Boční II 1401, 141 31 Prague, Czech Republic email: richard@wunsch.cz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so–called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from the first generation, and will be concentrated near the cluster center.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., et al. 2013, MNRAS, 436, 2398 CrossRefGoogle Scholar
Bedin, L. R., Piotto, G., Anderson, J., et al. 2004, ApJ, 605, L125 CrossRefGoogle Scholar
Cantó, J., Raga, A. C., & Rodríguez, L. F. 2000, ApJ, 536, 896 CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009, A&A, 505, 139 Google Scholar
Chevalier, R. A. & Clegg, A. W. 1985, Nature, 317, 44 CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2012, MNRAS, 420, 745 Google Scholar
de Mink, S. E., Pols, O. R., Langer, N., & Izzard, R. G. 2009, A&A, 507, L1 Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029 Google Scholar
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825 CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273 CrossRefGoogle Scholar
Gilbert, A. M. & Graham, J. R. 2007, ApJ, 668, 168 CrossRefGoogle Scholar
Harper-Clark, E. & Murray, N. 2009, ApJ, 693, 1696 CrossRefGoogle Scholar
Herrera, C. N. & Boulanger, F. 2015, IAU General Assembly, 22, 52184 Google Scholar
Jiménez-Bailón, E., Santos-Lleó, M., Mas-Hesse, J. M., et al. 2003, ApJ, 593, 127 Google Scholar
Krause, M., Charbonnel, C., Decressin, T., Meynet, G., & Prantzos, N. 2013, A&A, 552, A121 Google Scholar
Krause, M., Charbonnel, C., Decressin, T., et al. 2012, A&A, 546, L5 Google Scholar
Larsen, S. S. 2010, Royal Society of London Philosophical Transactions Series A, 368, 867 Google Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3 Google Scholar
Mucciarelli, A., Bellazzini, M., Ibata, R., et al. 2012, MNRAS, 426, 2889 Google Scholar
Palouš, J., Wünsch, R., Martínez-González, S., et al. 2013, ApJ, 772, 128 CrossRefGoogle Scholar
Palouš, J., Wünsch, R., & Tenorio-Tagle, G. 2014, ApJ, 792, 105 Google Scholar
Pancino, E., Ferraro, F. R., Bellazzini, M., Piotto, G., & Zoccali, M. 2000, ApJ, 534, L83 Google Scholar
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJ, 661, L53 Google Scholar
Piotto, G., Milone, A. P., Bedin, L. R., et al. 2015, AJ, 149, 91 Google Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431 Google Scholar
Raga, A. C., Velázquez, P. F., Cantó, J., Masciadri, E., & Rodríguez, L. F. 2001, ApJ, 559, L33 Google Scholar
Rogers, H. & Pittard, J. M. 2013, MNRAS, 431, 1337 Google Scholar
Silich, S., Tenorio-Tagle, G., & Muñoz-Tuñón, C. 2003, ApJ, 590, 791 Google Scholar
Silich, S., Tenorio-Tagle, G., & Muñoz-Tuñón, C. 2007, ApJ, 669, 952 Google Scholar
Silich, S., Tenorio-Tagle, G., & Rodríguez-González, A. 2004, ApJ, 610, 226 Google Scholar
Silich, S., Tenorio-Tagle, G., Torres-Campos, A., et al. 2009, ApJ, 700, 931 Google Scholar
Strickland, D. K. & Heckman, T. M. 2009, ApJ, 697, 2030 CrossRefGoogle Scholar
Tenorio-Tagle, G., Muñoz-Tuñón, C., Pérez, E., Silich, S., & Telles, E. 2006, ApJ, 643, 186 Google Scholar
Tenorio-Tagle, G., Silich, S., & Muñoz-Tuñón, C. 2007a, New Astronomy Reviews, 51, 125 Google Scholar
Tenorio-Tagle, G., Silich, S., Rodríguez-González, A., & Muñoz-Tuñón, C. 2005, ApJ, 628, L13 Google Scholar
Tenorio-Tagle, G., Wünsch, R., Silich, S., Muñoz-Tuñón, C., & Palouš, J. 2010, ApJ, 708, 1621 Google Scholar
Tenorio-Tagle, G., Wünsch, R., Silich, S., & Palouš, J. 2007b, ApJ, 658, 1196 Google Scholar
Wünsch, R., Silich, S., Palouš, J., Tenorio-Tagle, G., & Muñoz-Tuñón, C. 2011, ApJ, 740, 75 CrossRefGoogle Scholar
Wünsch, R., Tenorio-Tagle, G., Palouš, J., & Silich, S. 2008, ApJ, 683, 683 Google Scholar